Real-time adaptive colour segmentation for the RoboCup middle size league

被引:0
|
作者
Gönner, C [1 ]
Rous, M [1 ]
Kraiss, KF [1 ]
机构
[1] Rhein Westfal TH Aachen, Rhein Westfal TH Aachen, Chair Tech Comp Sci, D-52074 Aachen, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to detect objects using colour information, the mapping from points in colour space to the most likely object must be known. This work proposes an adaptive colour calibration based on the Bayes Theorem and chrominance histograms. Furthermore the object's shape is considered resulting in a more robust classification. A randomised hough transform is employed for the ball. The lines of the goals and flagposts are extracted by an orthogonal regression. Shape detection corrects over- and undersegmentations of the colour segmentation, thus enabling an update of the chrominance histograms. The entire algorithm, including a segmentation and a recalibration step, is robust enough to be used during a RoboCup game and runs in real-time.
引用
收藏
页码:402 / 409
页数:8
相关论文
共 50 条
  • [41] Real-time video segmentation
    Dibos, F
    Pelletier, S
    Koep, G
    AVSS 2005: ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, PROCEEDINGS, 2005, : 382 - 387
  • [42] Real-Time Self Localization for Autonomous Robot of RoboCup MSL
    Watanabe, Kaori
    Ma, Yuehang
    Yoshida, Tetsuya
    Suzuki, Hidekazu
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 94 - 97
  • [43] Towards real-time strategic teamwork:: A RoboCup case study
    Yoshimura, K
    Barnes, N
    Rönnquist, R
    Sonenberg, L
    ROBOCUP 2002: ROBOT SOCCER WORLD CUP VI, 2003, 2752 : 342 - 350
  • [44] Real-time object tracking and segmentation using adaptive color snake model
    Seo, KH
    Shin, JH
    Kim, W
    Lee, JJ
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2006, 4 (02) : 236 - 246
  • [45] RoboCup Small-Size League: Using Neural Networks to Learn Color Segmentation during Visual Processing
    Torres, Ernesto
    Weitzenfeld, Alfredo
    2008 5TH LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS 2008), 2008, : 12 - 17
  • [46] Real-time Image Semantic Segmentation Based on Block Adaptive Feature Fusion
    Huang T.-H.
    Nie Z.-Y.
    Wang Q.-G.
    Li S.
    Yan L.-C.
    Guo D.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (05): : 1137 - 1148
  • [47] Adaptive real-time motion segmentation technique based on statistical background model
    Kushwaha, A. K. S.
    Sharma, C. M.
    Khare, M.
    Prakash, O.
    Khare, A.
    IMAGING SCIENCE JOURNAL, 2014, 62 (05): : 285 - 302
  • [48] Adaptive Attention Mechanism Fusion for Real-Time Semantic Segmentation in Complex Scenes
    Chen, Dan
    Liu, Le
    Wang, Chenhao
    Bai, Xiru
    Wang, Zichen
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (08): : 3334 - 3342
  • [49] Real-time object tracking and segmentation using adaptive color snake model
    Seo, KH
    Lee, JJ
    IECON 2005: THIRTY-FIRST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, 2005, : 1902 - 1906
  • [50] ARTHuS: Adaptive Real-Time Human Segmentation in Sports through Online Distillation
    Cioppa, A.
    Deliege, A.
    Istasse, M.
    De Vleeschouwer, C.
    Van Droogenbroeck, M.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 2505 - 2514