A conjecture on the lower bound of the signed edge domination number of 2-connected graphs

被引:0
|
作者
Feng, Xing [1 ]
Ge, Jun [2 ,3 ]
机构
[1] Jiangxi Univ Sci & Technol, Fac Sci, Ganzhou, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu, Sichuan, Peoples R China
[3] Sichuan Normal Univ, Laurent Math Ctr, Chengdu, Sichuan, Peoples R China
关键词
Domination; Signed edge domination function; Signed edge domination number;
D O I
10.1016/j.dam.2021.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note, we construct an infinite family of counterexamples to a conjecture on the lower bound of the signed edge domination number of 2-connected graphs. We propose two problems in order to revise the original conjecture. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 45
页数:4
相关论文
共 50 条
  • [31] Tight upper bound of the rainbow vertex-connection number for 2-connected graphs
    Li, Xueliang
    Liu, Sujuan
    DISCRETE APPLIED MATHEMATICS, 2014, 173 : 62 - 69
  • [32] The Signed Total Domination Number of Graphs
    Gao, Mingjing
    Shan, Erfang
    ARS COMBINATORIA, 2011, 98 : 15 - 24
  • [34] Seymour’s Conjecture on 2-Connected Graphs of Large Pathwidth
    Tony Huynh
    Gwenaël Joret
    Piotr Micek
    David R. Wood
    Combinatorica, 2020, 40 : 839 - 868
  • [35] Signed Domination Number of Some Graphs
    Saeid Alikhani
    Fatemeh Ramezani
    Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 : 291 - 296
  • [36] Signed Domination Number of Some Graphs
    Alikhani, Saeid
    Ramezani, Fatemeh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (01): : 291 - 296
  • [37] Lower bounds on the signed total k-domination number of graphs
    Volkmann, Lutz
    AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 271 - 279
  • [38] Lower bounds on the signed total k-domination number of graphs
    Lutz Volkmann
    Aequationes mathematicae, 2016, 90 : 271 - 279
  • [39] Roman domination number of signed graphs
    Joseph, James
    Joseph, Mayamma
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (04) : 759 - 766
  • [40] SEYMOUR'S CONJECTURE ON 2-CONNECTED GRAPHS OF LARGE PATHWIDTH
    Huynh, Tony
    Joret, Gwenael
    Micek, Piotr
    Wood, David R.
    COMBINATORICA, 2020, 40 (06) : 839 - 868