Choice of the penalty parameter for the finite element discretization of Navier-Stokes equations

被引:2
|
作者
Bernardi, C
Girault, V
Hecht, F
机构
[1] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] Univ Paris 06, F-75252 Paris, France
关键词
D O I
10.1016/S1631-073X(03)00101-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Navier-Stokes equations, discretized by a penalization method and finite elements. The aim of this Note is to prove a posteriori error estimates which allow for an optimal choice of the penalty parameter, specially for adaptive meshes. To cite this article: C. Bernardi et al., C. R. Acad. Sci. Paris, Ser 1336 (2003). (C) 2003 Academie des sciences/tditions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:671 / 676
页数:6
相关论文
共 50 条
  • [41] A Multiscale Finite Element Formulation for the Incompressible Navier-Stokes Equations
    Baptista, Riedson
    Bento, Sergio S.
    Santos, Isaac P.
    Lima, Leonardo M.
    Valli, Andrea M. P.
    Catabriga, Lucia
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS (ICCSA 2018), PT II, 2018, 10961 : 253 - 267
  • [42] Behavior of small finite element structures for the Navier-Stokes equations
    Goubet, O
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (01): : 1 - 32
  • [43] A nonconforming finite element method for the stationary Navier-Stokes equations
    Karakashian, OA
    Jureidini, WN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 93 - 120
  • [45] MIXED FINITE-ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS
    JOHNSON, C
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1978, 12 (04): : 335 - 348
  • [46] A Weak Galerkin Finite Element Method for the Navier-Stokes Equations
    Zhang, Jiachuan
    Zhang, Kai
    Li, Jingzhi
    Wang, Xiaoshen
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (03) : 706 - 746
  • [47] MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS
    Li, Xiaocui
    You, Xu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (01): : 130 - 146
  • [48] FINITE-ELEMENT METHODS FOR PARABOLIZED NAVIER-STOKES EQUATIONS
    BOURGAULT, Y
    CAUSSIGNAC, P
    RENGGLI, L
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 111 (3-4) : 265 - 282
  • [49] A weak Galerkin finite element method for the Navier-Stokes equations
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 442 - 457
  • [50] A multiscale finite element method for the incompressible Navier-Stokes equations
    Masud, A
    Khurram, RA
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (13-16) : 1750 - 1777