This article establishes the asymptotic distributions of generalized method of moments (GMM) estimators when the true parameter lies on the boundary of the parameter space. The conditions allow the estimator objective function to be nonsmooth and to depend on preliminary estimators. The boundary of the parameter space may be curved and/or kinked. The article discusses three examples: (1) instrumental variables (IV) estimation of a regression model with nonlinear equality and/or inequality restrictions on the parameters; (2) method of simulated moments estimation of a multinomial discrete response model with some random coefficient variances equal to 0, some random effect variances equal to 0, or some measurement error variances equal to 0; and (3) semiparametric least squares estimation of a partially linear regression model with nonlinear equality and/or inequality restrictions on the parameters.
机构:
Beijing Forestry Univ, Coll Sci, Beijing 100083, Peoples R ChinaBeijing Forestry Univ, Coll Sci, Beijing 100083, Peoples R China
Gao, Yin
Gao, Jinwu
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Sch Econ, Qingdao 266100, Peoples R ChinaBeijing Forestry Univ, Coll Sci, Beijing 100083, Peoples R China
Gao, Jinwu
Yang, Xiangfeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Int Business & Econ, Sch Informat Technol & Management, Beijing 100029, Peoples R ChinaBeijing Forestry Univ, Coll Sci, Beijing 100083, Peoples R China
机构:
Univ Paris 10, CEPREMAP, PSE & Economix, F-94220 Charenton Le Pont, FranceUniv Paris 10, CEPREMAP, PSE & Economix, F-94220 Charenton Le Pont, France