On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision

被引:160
|
作者
Ochs, Peter [1 ,2 ]
Dosovitskiy, Alexey [1 ,2 ]
Brox, Thomas [1 ,2 ]
Pock, Thomas [3 ,4 ]
机构
[1] Univ Freiburg, Dept Comp Sci, D-79110 Freiburg, Germany
[2] Univ Freiburg, BIOSS Ctr Biol Signalling Studies, D-79110 Freiburg, Germany
[3] Graz Univ Technol, Inst Comp Graph & Vis, A-8010 Graz, Austria
[4] AIT Austrian Inst Technol GmbH, Digital Safety & Secur Dept, A-1220 Vienna, Austria
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2015年 / 8卷 / 01期
基金
奥地利科学基金会;
关键词
iteratively reweighted algorithm; majorization-minimization; IRL1; IRLS; nonsmooth nonconvex optimization; Kurdyka-Lojasiewicz inequality; computer vision; nonconvex total generalized variation; PRIMAL-DUAL ALGORITHMS; MINIMIZATION; RECONSTRUCTION; CONVERGENCE; RESTORATION; RECOVERY;
D O I
10.1137/140971518
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Natural image statistics indicate that we should use nonconvex norms for most regularization tasks in image processing and computer vision. Still, they are rarely used in practice due to the challenge of optimization. Recently, iteratively reweighed l(1) minimization (IRL1) has been proposed as a way to tackle a class of nonconvex functions by solving a sequence of convex l(2)-l(1) problems. We extend the problem class to the sum of a convex function and a (nonconvex) nondecreasing function applied to another convex function. The proposed algorithm sequentially optimizes suitably constructed convex majorizers. Convergence to a critical point is proved when the Kurdyka-Lojasiewicz property and additional mild restrictions hold for the objective function. The efficiency and practical importance of the algorithm are demonstrated in computer vision tasks such as image denoising and optical flow. Most applications seek smooth results with sharp discontinuities. These are achieved by combining nonconvexity with higher order regularization.
引用
收藏
页码:331 / 372
页数:42
相关论文
共 50 条
  • [31] Oracle Complexity in Nonsmooth Nonconvex Optimization
    Kornowski, Guy
    Shamir, Ohad
    Journal of Machine Learning Research, 2022, 23
  • [32] Distributed stochastic nonsmooth nonconvex optimization
    Kungurtsev, Vyacheslav
    OPERATIONS RESEARCH LETTERS, 2022, 50 (06) : 627 - 631
  • [33] NONSMOOTH NONCONVEX OPTIMIZATION FOR GEOSOUNDING INVERSION
    Hidalgo-Silva, Hugo
    Gomez-Trevino, Enrique
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1606 - 1609
  • [34] Proximal ADMM for nonconvex and nonsmooth optimization
    Yang, Yu
    Jia, Qing-Shan
    Xu, Zhanbo
    Guan, Xiaohong
    Spanos, Costas J.
    AUTOMATICA, 2022, 146
  • [35] Nonconvex nonsmooth optimization via convex–nonconvex majorization–minimization
    A. Lanza
    S. Morigi
    I. Selesnick
    F. Sgallari
    Numerische Mathematik, 2017, 136 : 343 - 381
  • [36] Improved iteratively reweighted least squares algorithms for sparse recovery problem
    Liu, Yufeng
    Zhu, Zhibin
    Zhang, Benxin
    IET IMAGE PROCESSING, 2022, 16 (05) : 1324 - 1340
  • [37] Block Iteratively Reweighted Algorithms for Robust Symmetric Nonnegative Matrix Factorization
    He, Zhen-Qing
    Yuan, Xiaojun
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (10) : 1510 - 1514
  • [38] Solution of Nonconvex Nonsmooth Stochastic Optimization Problems
    Yu. M. Ermoliev
    V. I. Norkin
    Cybernetics and Systems Analysis, 2003, 39 (5) : 701 - 715
  • [39] Bregman distance regularization for nonsmooth and nonconvex optimization
    Mashreghi, Zeinab
    Nasri, Mostafa
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 415 - 424
  • [40] Stochastic subgradient algorithm for nonsmooth nonconvex optimization
    Gulcin Dinc Yalcin
    Journal of Applied Mathematics and Computing, 2024, 70 : 317 - 334