Marstrand's Theorem revisited: Projecting sets of dimension zero

被引:1
|
作者
Beresnevich, Victor [1 ]
Falconer, Kenneth [2 ]
Velani, Sanju [1 ]
Zafeiropoulos, Agamemnon [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Hausdorff measure/dimension; Potential theory; Orthogonal projections; HAUSDORFF MEASURE;
D O I
10.1016/j.jmaa.2018.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a refinement of Marstrand's projection theorem for Hausdorff dimension functions finer than the usual power functions, including an analogue of Marstrand's Theorem for logarithmic Hausdorff dimension. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1820 / 1845
页数:26
相关论文
共 50 条
  • [41] Funayama's theorem revisited
    Bezhanishvili, Guram
    Gabelaia, David
    Jibladze, Mamuka
    ALGEBRA UNIVERSALIS, 2013, 70 (03) : 271 - 286
  • [42] Tanaka's theorem revisited
    Bahrami, Saeideh
    ARCHIVE FOR MATHEMATICAL LOGIC, 2020, 59 (7-8) : 865 - 877
  • [43] Stoilow's theorem revisited
    Luisto, Rami
    Pankka, Pekka
    EXPOSITIONES MATHEMATICAE, 2020, 38 (03) : 303 - 318
  • [44] Dugundji's Theorem Revisited
    Coniglio, Marcelo E.
    Peron, Newton M.
    LOGICA UNIVERSALIS, 2014, 8 (3-4) : 407 - 422
  • [45] Butler's theorem revisited
    De Vivo, Clorinda
    Metelli, Claudia
    GROUPS AND MODEL THEORY, 2012, 576 : 57 - 76
  • [46] Tanaka’s theorem revisited
    Saeideh Bahrami
    Archive for Mathematical Logic, 2020, 59 : 865 - 877
  • [47] LIOUVILLE'S THEOREM REVISITED
    Tojeiro, Ruy
    ENSEIGNEMENT MATHEMATIQUE, 2007, 53 (1-2): : 67 - 86
  • [48] Miller's theorem revisited
    Dutta Roy S.C.
    Circuits, Systems and Signal Processing, 2000, 19 (6) : 487 - 499
  • [49] WARING'S THEOREM REVISITED
    Rojas, Andres
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (03) : 979 - 1003
  • [50] A Luttinger's theorem revisited
    Farid, B
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1999, 79 (08): : 1097 - 1143