The resolution complexity of random constraint satisfaction problems

被引:2
|
作者
Molloy, M [1 ]
Salavatipour, M [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
关键词
D O I
10.1109/SFCS.2003.1238207
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider random instances of constraint satisfaction problems where each variable has domain size d, and each constraint contains t restrictions on k variables. For each (d, k, t) we determine whether the resolution complexity is a.s. constant, polynomial or exponential in the number of variables. For a particular range of (d, k, t), we determine a sharp threshold for resolution complexity where the resolution complexity drops from a.s. exponential to a.s. polynomial when the clause density passes a specific value.
引用
收藏
页码:330 / 339
页数:10
相关论文
共 50 条
  • [41] Bounding the scaling window of random constraint satisfaction problems
    Shen, Jing
    Ren, Yaofeng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 786 - 801
  • [42] Threshold properties of random boolean constraint satisfaction problems
    Istrate, G
    DISCRETE APPLIED MATHEMATICS, 2005, 153 (1-3) : 141 - 152
  • [43] Random subcubes as a Toy model for constraint satisfaction problems
    Mora, Thierry
    Zdeborova, Lenka
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (06) : 1121 - 1138
  • [44] The Asymptotics of the Clustering Transition for Random Constraint Satisfaction Problems
    Budzynski, Louise
    Semerjian, Guilhem
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (05) : 1490 - 1522
  • [45] Exact phase transitions in random constraint satisfaction problems
    Xu, K
    Li, W
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2000, 12 : 93 - 103
  • [46] Exact Phase Transitions in Random Constraint Satisfaction Problems
    Xu, Ke
    Li, Wei
    Journal of Artificial Intelligence Research, 2001, 12 (00):
  • [47] An Average Analysis of Backtracking on Random Constraint Satisfaction Problems
    Ke Xu
    Wei Li
    Annals of Mathematics and Artificial Intelligence, 2001, 33 : 21 - 37
  • [48] Random Subcubes as a Toy Model for Constraint Satisfaction Problems
    Thierry Mora
    Lenka Zdeborová
    Journal of Statistical Physics, 2008, 131 : 1121 - 1138
  • [49] A general model and thresholds for random constraint satisfaction problems
    Fan, Yun
    Shen, Jing
    Xu, Ke
    ARTIFICIAL INTELLIGENCE, 2012, 193 : 1 - 17
  • [50] Frozen variables in random boolean constraint satisfaction problems
    Molloy, Michael
    Restrepo, Ricardo
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1306 - 1318