Full Muntz theorem in L(p)[0,1]

被引:15
|
作者
Operstein, V
机构
关键词
D O I
10.1006/jath.1996.0039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theorem characterizes sequences {lambda(i)})(0)(infinity) for which the Muntz space span {x(lambda 0), x(lambda 1), ...} is dense in L(p)[0, 1], 1 <p <infinity. (C) 1996 Academic Press, Inc.
引用
收藏
页码:233 / 235
页数:3
相关论文
共 50 条
  • [21] On the universal function for the class LP[0,1], p ∈ (0,1)
    Grigoryan, M. G.
    Sargsyan, A. A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (08) : 3111 - 3133
  • [22] A theorem of Littlewood, Orlicz, and Grothendieck about sums in L1(0,1)
    Diestel, J
    Fourie, J
    Swart, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (01) : 376 - 394
  • [23] Beurling's theorem for the Hardy operator on L2[0,1]
    Agler, Jim
    McCarthy, John E. E.
    ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (3-4): : 573 - 592
  • [24] Bijections between (0,1), (0,1], and [0,1]
    Witkowski, Alfred
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (02): : 139 - 139
  • [25] On a Property of the Franklin System in C[0,1] and L1[0,1]
    Mikayelyan, V. G.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 284 - 287
  • [26] MUNTZ-JACKSON THEOREMS IN LP(0,1), 1-LESS-THAN-OR-EQUAL-TO-P-LESS-THAN-2
    GOLITSCHEK, MV
    JOURNAL OF APPROXIMATION THEORY, 1991, 67 (03) : 337 - 346
  • [27] Full proof of Kwapien's theorem on representing bounded mean zero functions on [0,1]
    Ber, Aleksei
    Borst, Matthijs
    Sukochev, Fedor
    STUDIA MATHEMATICA, 2021, 259 (03) : 241 - 270
  • [28] Lp[0,1] \ ∨q&gt;p Lq[0,1] is spaceable for every p &gt; 0
    Botelho, G.
    Favaro, V. V.
    Pellegrino, D.
    Seoane-Sepulveda, J. B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 2963 - 2965
  • [29] Weak*-closed derivations from C[0,1] into L(infinity)[0,1]
    Weaver, N
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (03): : 367 - 375
  • [30] Images of nowhere differentiable Lipschitz maps of [0,1] into L1[0,1]
    Catrina, Florin
    Ostrovskii, Mikhail, I
    FUNDAMENTA MATHEMATICAE, 2018, 243 (01) : 75 - 83