Discrete epipolar geometry

被引:0
|
作者
Hamanaka, M [1 ]
Kenmochi, Y [1 ]
Sugimoto, A [1 ]
机构
[1] Okayama Univ, Dept Informat Technol, Okayama 700, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The epipolar geometry, which lies in the basis of 3D reconstruction techniques in the field of computer vision, is formulated in continuous spaces and gives geometric relationships between different views of a point in space. In applications, however, we cannot deal with points themselves in digital images. This is because digital images involve some digitization process and the smallest unit in digital images is a pixel. In this paper, we propose a discrete version of the epipolar geometry, called the discrete epipolar geometry, that gives geometric relationships between pixels rather than points. We then apply this discrete epipolar geometry to 3D reconstruction.
引用
收藏
页码:323 / 334
页数:12
相关论文
共 50 条
  • [31] MOTION RETRIEVAL USING CONSISTENCY OF EPIPOLAR GEOMETRY
    Ashraf, Nazim
    Foroosh, Hassan
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4219 - 4223
  • [32] Determining the epipolar geometry and its uncertainty: A review
    Zhang, ZY
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 27 (02) : 161 - 195
  • [33] On the epipolar geometry of the crossed-slits projection
    Feldman, D
    Pajdla, T
    Weinshall, D
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 988 - 995
  • [34] Tracking Control of Mobile Robots Localized via Chained Fusion of Discrete and Continuous Epipolar Geometry, IMU and Odometry
    Tick, David
    Satici, Aykut C.
    Shen, Jinglin
    Gans, Nicholas
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (04) : 1237 - 1250
  • [35] Estimation of epipolar geometry via the radon transform
    Lehmann, Stefan
    Bradley, Andrew P.
    Clarkson, I. Vaughan L.
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 1745 - 1748
  • [36] Epipolar geometry estimation based on evolutionary agents
    Hua, Mingxing
    McMenemy, Karen
    Ferguson, Stuart
    Dodds, Gordon
    Yuan, Aozong
    PATTERN RECOGNITION, 2008, 41 (02) : 575 - 591
  • [37] Epipolar geometry via rectification of spherical images
    Fujiki, Jun
    Torii, Akihiko
    Akaho, Shotaro
    COMPUTER VISION/COMPUTER GRAPHICS COLLABORATION TECHNIQUES, 2007, 4418 : 461 - +
  • [38] Mirrors in motion: Epipolar geometry and motion estimation
    Geyer, C
    Daniilidis, K
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 766 - 773
  • [39] An Epipolar Geometry Guided Image Inpainting Method
    Gu, Chen
    Jiang, Guang
    Duan, Linghao
    2012 5TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2012, : 347 - 351
  • [40] A visual servoing algorithm based on epipolar geometry
    Chesi, G
    Prattichizzo, D
    Vicino, A
    2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 737 - 742