Improving the convergence of combined Newton-Raphson and Gauss-Newton multilevel iteration method

被引:0
|
作者
Honkala, M [1 ]
Karanko, V [1 ]
Roos, D [1 ]
机构
[1] Helsinki Univ Technol, Circuit Theory Lab, FIN-02015 Helsinki, Finland
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
During the last years, multilevel methods have been applied in parallel circuit simulation. However, aiding the convergence of multilevel methods has gained only a little notice. This paper presents a combined Newton-Raphson and Gauss-Newton (NRGN) multilevel method for parallel circuit simulation in a networked environment. The NRGN method is formulated such that convergence aiding methods can be effectively applied. The example simulations show that, especially with step-size adjusting methods, the NRGN method improves the convergence and thus the speed of parallel circuit simulation.
引用
收藏
页码:229 / 232
页数:4
相关论文
共 50 条
  • [41] EXTENDING CONVERGENCE DOMAIN OF NEWTON-RAPHSON METHOD IN STRUCTURAL-ANALYSIS
    SCHMIDT, WF
    COMPUTERS & STRUCTURES, 1978, 9 (03) : 265 - 272
  • [42] ON THE SEMILOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD USING RECURRENT FUNCTIONS
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 307 - 319
  • [43] Extended convergence of Gauss-Newton's method and uniqueness of the solution
    Argyros, Ioannis K.
    Cho, Yeol Je
    George, Santhosh
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (02) : 135 - 142
  • [44] ON THE CONVERGENCE OF INEXACT GAUSS-NEWTON METHOD FOR SOLVING SINGULAR EQUATIONS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [45] The path planning of space manipulator based on Gauss-Newton iteration method
    Xie, Yaen
    Wu, Xiande
    Shi, Zhen
    Wang, Zhipeng
    Sun, Jun
    Hao, Tianwei
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (08) : 1 - 12
  • [46] A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss-Newton to Robust Gauss-Newton
    Qin, Youwei
    Kavetski, Dmitri
    Kuczera, George
    WATER RESOURCES RESEARCH, 2018, 54 (11) : 9655 - 9683
  • [47] On Newton-Raphson Iteration for Multiplicative Inverses Modulo Prime Powers
    Dumas, Jean-Guillaume
    IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (08) : 2106 - 2109
  • [48] Use of the Newton-Raphson iteration to eliminate low frequency dipoles
    Schlarmann, ME
    Geiger, RL
    2002 45TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL I, CONFERENCE PROCEEDINGS, 2002, : 535 - 538
  • [49] CONVERGENCE ANALYSIS OF THE GENERAL GAUSS-NEWTON ALGORITHM
    SCHABACK, R
    NUMERISCHE MATHEMATIK, 1985, 46 (02) : 281 - 309
  • [50] The Convergence of Newton–Raphson Iteration with Kepler's Equation
    E. D. Charles
    J. B. Tatum
    Celestial Mechanics and Dynamical Astronomy, 1997, 69 : 357 - 372