A Remote Sensing Approach for Surface Urban Heat Island Modeling in a Tropical Colombian City Using Regression Analysis and Machine Learning Algorithms

被引:9
|
作者
Garzon, Julian [1 ,2 ]
Molina, Inigo [1 ]
Velasco, Jesus [1 ]
Calabia, Andres [3 ]
机构
[1] Univ Politecn Madrid, Dept Surveying & Cartog Engn, Madrid 28031, Spain
[2] Univ Quindio, Programa Ingn Topog & Geomat, Armenia 630004, Armenia
[3] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
关键词
Surface Urban Heat Island (SUHI); Land Surface Temperature (LST); Principal Component Analysis (PCA); Multiple Linear Regression (MLR); Machine Learning; Naive Bayes; EMISSIVITY RETRIEVAL; TEMPERATURE RETRIEVAL; VEGETATION COVER; SATELLITE DATA; NDVI; INDEX; LANDSCAPE; VARIABLES; PATTERNS; IMPACTS;
D O I
10.3390/rs13214256
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Surface Urban Heat Islands (SUHI) phenomenon has adverse environmental consequences on human activities, biophysical and ecological systems. In this study, Land Surface Temperature (LST) from Landsat and Sentinel-2 satellites is used to investigate the contribution of potential factors that generate the SUHI phenomenon. We employ Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) techniques to model the main temporal and spatial SUHI patterns of Cartago, Colombia, for the period 2001-2020. We test and evaluate the performance of three different emissivity models to retrieve LST. The fractional vegetation cover model using Sentinel-2 data provides the best results with R-2 = 0.78, while the ASTER Global Emissivity Dataset v3 and the land surface emissivity model provide R-2 = 0.27 and R-2 = 0.26, respectively. Our SUHI model reveals that the factors with the highest impact are the Normalized Difference Water Index (NDWI) and the Normalized Difference Build-up Index (NDBI). Furthermore, we incorporate a weighted Naive Bayes Machine Learning (NBML) algorithm to identify areas prone to extreme temperatures that can be used to define and apply normative actions to mitigate the negative consequences of SUHI. Our NBML approach demonstrates the suitability of the new SUHI model with uncertainty within 95%, against the 88% given by the Support Vector Machine (SVM) approach.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Estimation of long term low resolution surface urban heat island intensities for tropical cities using MODIS remote sensing data
    Flores, Jose L. R.
    Pereira Filho, Augusto J.
    Karam, Hugo A.
    URBAN CLIMATE, 2016, 17 : 32 - 66
  • [22] Urban surface temperature behaviour and heat island effect in a tropical planned city
    Ahmed, Adeb Qaid
    Ossen, Dilshan Remaz
    Jamei, Elmira
    Abd Manaf, Norhashima
    Said, Ismail
    Ahmad, Mohd Hamdan
    THEORETICAL AND APPLIED CLIMATOLOGY, 2015, 119 (3-4) : 493 - 514
  • [23] Urban surface temperature behaviour and heat island effect in a tropical planned city
    Adeb Qaid Ahmed
    Dilshan Remaz Ossen
    Elmira Jamei
    Norhashima Abd Manaf
    Ismail Said
    Mohd Hamdan Ahmad
    Theoretical and Applied Climatology, 2015, 119 : 493 - 514
  • [24] ASSESSING AND MODELLING URBAN HEAT ISLAND IN BAGUIO CITY USING LANDSAT IMAGERY AND MACHINE LEARNING
    Vergara, D. C. D. M.
    Blanco, A. C.
    Marciano, J. J. S., Jr.
    Meneses, S. F., III
    Borlongan, N. J. B.
    Sabuito, A. J. C.
    GEOINFORMATION WEEK 2022, VOL. 48-4, 2023, : 457 - 464
  • [25] Temperature projection in a tropical city using remote sensing and dynamic modeling
    Nichol, Janet
    Hang, To Pui
    Ng, Edward
    CLIMATE DYNAMICS, 2014, 42 (11-12) : 2921 - 2929
  • [26] Temperature projection in a tropical city using remote sensing and dynamic modeling
    Janet Nichol
    To Pui Hang
    Edward Ng
    Climate Dynamics, 2014, 42 : 2921 - 2929
  • [27] CHARACTERIZATION OF THE URBAN HEAT ISLAND IN THE UAM CAMPUS USING REMOTE SENSING
    de la Rubia, Elena Aragoneses
    GEOFOCUS-REVISTA INTERNACIONAL DE CIENCIA Y TECNOLOGIA DE LA INFORMACION GEOGRAFICA, 2020, (26): : 43 - 67
  • [28] PREDICTION AND ANALYSIS OF URBAN HEAT ISLAND EFFECT IN DANGSHAN BY REMOTE SENSING
    Fang, Gang
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2015, 8 (04): : 2195 - 2211
  • [29] A remote sensing study of urban heat island effect in Lanzhou city, northwest China
    Yang, HQ
    Liu, Y
    REMOTE SENSING AND SPACE TECHNOLOGY FOR MULTIDISCIPLINARY RESEARCH AND APPLICATIONS, 2006, 6199