In Vivo 31P Magnetic Resonance Spectroscopic Imaging (MRSI) for Metabolic Profiling of Human Breast Cancer Xenografts

被引:10
|
作者
Esmaeili, Morteza [1 ]
Moestue, Siver A. [1 ,2 ]
Hamans, Bob C. [3 ]
Veltien, Andor [3 ]
Kristian, Alexandr [4 ,5 ]
Engebraten, Olav [5 ,6 ]
Maelandsmo, Gunhild M. [4 ]
Gribbestad, Ingrid S. [1 ]
Bathen, Tone F. [1 ]
Heerschap, Arend [1 ,3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Circulat & Med Imaging, N-7491 Trondheim, Norway
[2] St Olavs Univ Hosp, N-7006 Trondheim, Norway
[3] Radboud Univ Nijmegen, Med Ctr, Dept Radiol, NL-6525 ED Nijmegen, Netherlands
[4] Oslo Univ Hosp, Dept Tumor Biol, Inst Canc Res, N-0450 Oslo, Norway
[5] Univ Oslo, Inst Clin Med, Fac Med, Oslo, Norway
[6] Oslo Univ Hosp, Dept Oncol, N-0450 Oslo, Norway
关键词
phospholipid; choline metabolism; phosphorus MR spectroscopic imaging; high field; ethanolamine kinase; basal-like; PREDICTING PATHOLOGICAL RESPONSE; GENE-EXPRESSION; CHOLINE KINASE; NEOADJUVANT CHEMOTHERAPY; MOLECULAR PORTRAITS; TUMOR SUBTYPES; H-1; PROSTATE; QUANTIFICATION; MARKERS;
D O I
10.1002/jmri.24588
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo study cancer associated with abnormal metabolism of phospholipids, of which several have been proposed as biomarkers for malignancy or to monitor response to anticancer therapy. We explored 3D P-31 magnetic resonance spectroscopic imaging (MRSI) at high magnetic field for in vivo assessment of individual phospholipids in two patient-derived breast cancer xenografts representing good and poor prognosis (luminal- and basal-like tumors). Materials and MethodsMetabolic profiles from luminal-like and basal-like xenograft tumors were obtained in vivo using 3D P-31 MRSI at 11.7T and from tissue extracts in vitro at 14.1T. Gene expression analysis was performed in order to support metabolic differences between the two xenografts. ResultsIn vivo P-31 MR spectra were obtained in which the prominent resonances from phospholipid metabolites were detected at a high signal-to-noise ratio (SNR >7.5). Metabolic profiles obtained in vivo were in agreement with those obtained in vitro and could be used to discriminate between the two xenograft models, based on the levels of phosphocholine, phosphoethanolamine, glycerophosphocholine, and glycerophosphoethanolamine. The differences in phospholipid metabolite concentration could partly be explained by gene expression profiles. ConclusionNoninvasive metabolic profiling by 3D P-31 MRSI can discriminate between subtypes of breast cancer based on different concentrations of choline- and ethanolamine-containing phospholipids. J. Magn. Reson. Imaging 2015;41:601-609. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:601 / 609
页数:9
相关论文
共 50 条
  • [21] In vivo 31P magnetic resonance spectroscopy of human brain at 7 T:: An initial experience
    Lei, H
    Zhu, XH
    Zhang, XL
    Ugurbil, K
    Chen, W
    MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (02) : 199 - 205
  • [22] In vivo 31P magnetic resonance spectroscopy for differentiation of pancreas cancer from chronic pancreatitis
    Yoon, K
    Lee, M
    Lee, JH
    Seo, D
    Kim, CG
    Auh, YH
    RADIOLOGY, 1998, 209P : 371 - 371
  • [23] 31P MRSI and 1H MRS at 7T: initial results in human breast cancer
    Klomp, Dennis W. J.
    van de Bank, Bart L.
    Raaijmakers, Alexander
    Korteweg, Mies A.
    Possanzini, Cecilia
    Boer, Vincent O.
    de Berg, Cornelius A. T. van
    van de Bosch, Maurice A. A. J.
    Luijten, Peter R.
    NMR IN BIOMEDICINE, 2011, 24 (10) : 1337 - 1342
  • [24] 31P magnetic resonance spectroscopy of the breast and the influence of the menstrual cycle
    B. L. Stehouwer
    W. J. M. van der Kemp
    P. R. Luijten
    M. A. A. J. van den Bosch
    W. B. Veldhuis
    J. P. Wijnen
    D. W. J. Klomp
    Breast Cancer Research and Treatment, 2014, 144 : 583 - 589
  • [25] 31P magnetic resonance spectroscopy of the breast and the influence of the menstrual cycle
    Stehouwer, B. L.
    van der Kemp, W. J. M.
    Luijten, P. R.
    van den Bosch, M. A. A. J.
    Veldhuis, W. B.
    Wijnen, J. P.
    Klomp, D. W. J.
    BREAST CANCER RESEARCH AND TREATMENT, 2014, 144 (03) : 583 - 589
  • [26] Ex Vivo Analysis of Kidney Graft Viability Using 31P Magnetic Resonance Imaging Spectroscopy
    Longchamp, Alban
    Klauser, Antoine
    Songeon, Julien
    Agius, Thomas
    Nastasi, Antonio
    Ruttiman, Raphael
    Moll, Solange
    Meier, Raphael P. H.
    Buhler, Leo
    Corpataux, Jean-Marc
    Lazeyras, Francois
    TRANSPLANTATION, 2020, 104 (09) : 1825 - 1831
  • [27] Accurate Metabolic Images of the Human Myocardium by Means of 31P Magnetic Resonance Chemical Shift Imaging with Spatial Saturation Pulses
    Geier, Oliver
    Weng, Andreas Max
    Ruff, Jan
    Machann, Wolfram
    Horn, Michael
    Hahn, Dietbert
    Spindler, Matthias
    Beer, Meinrad
    Koestler, Herbert
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2013, 42 (05) : 187 - 195
  • [28] Response of choline metabolites to docetaxel therapy is quantified in vivo by localized 31P MRS of human breast cancer xenografts and in vitro by high-resolution 31P NMR spectroscopy of cell extracts
    Morse, David L.
    Raghunand, Natarajan
    Sadarangani, Pooja
    Murthi, Shiva
    Job, Constantin
    Day, Sam
    Howison, Christine
    Gillies, Robert J.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (02) : 270 - 280
  • [29] P-31 METABOLISM OF HUMAN BREAST - AN IN-VIVO MAGNETIC-RESONANCE SPECTROSCOPIC STUDY AT 1.5 TESLA
    TWELVES, CJ
    LOWRY, M
    PORTER, DA
    DOBBS, NA
    GRAVES, PE
    SMITH, MA
    RICHARDS, MA
    BRITISH JOURNAL OF RADIOLOGY, 1994, 67 (793): : 36 - 45
  • [30] Three-dimensional high-resolution magnetic resonance spectroscopic imaging for absolute quantification of 31P metabolites in human liver
    Chmelik, M.
    Schmid, A. I.
    Gruber, S.
    Szendroedi, J.
    Krssak, M.
    Trattnig, S.
    Moser, E.
    Roden, M.
    MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (04) : 796 - 802