Deriving an Optimal Noise Adding Mechanism for Privacy-Preserving Machine Learning

被引:12
|
作者
Kumar, Mohit [1 ,2 ]
Rossbory, Michael [2 ]
Moser, Bernhard A. [2 ]
Freudenthaler, Bernhard [2 ]
机构
[1] Univ Rostock, Fac Comp Sci & Elect Engn, Rostock, Germany
[2] Software Competence Ctr Hagenberg, Hagenberg, Austria
基金
欧盟地平线“2020”;
关键词
Privacy; Noise adding mechanism; Machine learning;
D O I
10.1007/978-3-030-27684-3_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential privacy is a standard mathematical framework to quantify the degree to which individual privacy in a statistical dataset is preserved. We derive an optimal (epsilon, delta)-differentially private noise adding mechanism for real-valued data matrices meant for the training of models by machine learning algorithms. The aim is to protect a machine learning algorithm from an adversary who seeks to gain an information about the data from algorithm's output by perturbing the value in a sample of the training data. The fundamental issue of trade-off between privacy and utility is addressed by presenting a novel approach consisting of three steps: (1) the sufficient conditions on the probability density function of noise for (epsilon, delta)-differential privacy of a machine learning algorithm are derived; (2) the noise distribution that, for a given level of entropy, minimizes the expected noise magnitude is derived; (3) using entropy level as the design parameter, the optimal entropy level and the corresponding probability density function of the noise are derived.
引用
收藏
页码:108 / 118
页数:11
相关论文
共 50 条
  • [11] Challenges of Privacy-Preserving Machine Learning in IoT
    Zheng, Mengyao
    Xu, Dixing
    Jiang, Linshan
    Gu, Chaojie
    Tan, Rui
    Cheng, Peng
    PROCEEDINGS OF THE 2019 INTERNATIONAL WORKSHOP ON CHALLENGES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR INTERNET OF THINGS (AICHALLENGEIOT '19), 2019, : 1 - 7
  • [12] Cryptographic Approaches for Privacy-Preserving Machine Learning
    Jiang Han
    Liu Yiran
    Song Xiangfu
    Wang Hao
    Zheng Zhihua
    Xu Qiuliang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (05) : 1068 - 1078
  • [13] Privacy-preserving quantum machine learning using differential privacy
    Senekane, Makhamisa
    Mafu, Mhlambululi
    Taele, Benedict Molibeli
    2017 IEEE AFRICON, 2017, : 1432 - 1435
  • [14] Balanced Privacy Budget Allocation for Privacy-Preserving Machine Learning
    He, Bingchang
    Miyaji, Atsuko
    INFORMATION SECURITY, ISC 2023, 2023, 14411 : 42 - 56
  • [15] Privacy-friendly machine learning - Part 2: Privacy attacks and privacy-preserving machine learning
    Stock J.
    Petersen T.
    Behrendt C.-A.
    Federrath H.
    Kreutzburg T.
    Informatik Spektrum, 2022, 45 (3) : 137 - 145
  • [16] Privacy-preserving federated learning based on noise addition
    Wu, Xianlin
    Chen, Yuwen
    Yu, Haiyang
    Yang, Zhen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [17] Staged Noise Perturbation for Privacy-Preserving Federated Learning
    Li, Zhe
    Chen, Honglong
    Gao, Yudong
    Ni, Zhichen
    Xue, Huansheng
    Shao, Huajie
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 936 - 947
  • [18] Federated Learning for Privacy-Preserving Machine Learning in IoT Networks
    Anitha, G.
    Jegatheesan, A.
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 338 - 342
  • [19] Interpretable Machine Learning for Privacy-Preserving Pervasive Systems
    Baron, Benjamin
    Musolesi, Mirco
    IEEE PERVASIVE COMPUTING, 2020, 19 (01) : 73 - 82
  • [20] Efficient Privacy-Preserving Machine Learning for Blockchain Network
    Kim, Hyunil
    Kim, Seung-Hyun
    Hwang, Jung Yeon
    Seo, Changho
    IEEE ACCESS, 2019, 7 : 136481 - 136495