Aerosol-jet-printed graphene electrochemical immunosensors for rapid and label-free detection of SARS-CoV-2 in saliva

被引:34
|
作者
Pola, Cicero C. [1 ]
Rangnekar, Sonal, V [2 ]
Sheets, Robert [1 ]
Downing, Julia R. [2 ]
Parate, Kshama W. [2 ]
Wallace, Shay G. [1 ]
Tsai, Daphne [2 ]
Hersam, Mark C. [2 ]
Gomes, Carmen L. [2 ,3 ,4 ]
Claussen, Jonathan C. [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
graphene; biosensor; electrochemical impedance spectroscopy; COVID-19; aerosol jet printing; POINT-OF-CARE; IMPEDANCE SPECTROSCOPY; HIGH-RESOLUTION; NASOPHARYNGEAL SWAB; CONDUCTIVITY; CHALLENGES; ANTIBODIES; BIOSENSOR; GRAPHITE;
D O I
10.1088/2053-1583/ac7339
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 spike receptor-binding domain (RBD) in saliva samples acquired noninvasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 +/- 4.72 pg ml(-1) for spike RBD and 110.38 +/- 9.00 pg ml(-1) for spike S1) as well as fast response time (similar to 30 min), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng ml(-1) and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Simplistic Label-Free Electrochemical Immunosensing Approach for Rapid and Sensitive Detection of Anti-SARS-COV-2 Nucleocapsid Antibodies
    Kock, Branham J.
    Du Plooy, Jarid
    Cloete, Rochida A.
    Jahed, Nazeem
    Nguyen Pham-Truong, Thuan
    Arendse, Christopher
    Pokpas, Keagan
    CHEMISTRYSELECT, 2024, 9 (20):
  • [22] Label-free Electrochemical Immunosensors for Viruses and Antibodies Detection-Review
    Radecka, Hanna
    Radecki, Jerzy
    JOURNAL OF THE MEXICAN CHEMICAL SOCIETY, 2015, 59 (04) : 269 - 275
  • [23] Label-free electrochemical aptasensor for the detection of SARS-CoV-2 spike protein based on carbon cloth sputtered gold nanoparticles
    Adeel M.
    Asif K.
    Alshabouna F.
    Canzonieri V.
    Rahman M.M.
    Ansari S.A.
    Güder F.
    Rizzolio F.
    Daniele S.
    Biosensors and Bioelectronics: X, 2022, 12
  • [24] Label-Free Immunoassay for Sensitive and Rapid Detection of the SARS-CoV-2 Antigen Based on Functionalized Magnetic Nanobeads with Chemiluminescence and Immunoactivity
    Wang, Shanshan
    Shu, Jiangnan
    Lyu, Aihua
    Huang, Xiaoxue
    Zeng, Weihong
    Jin, Tengchuan
    Cui, Hua
    ANALYTICAL CHEMISTRY, 2021, 93 (42) : 14238 - 14246
  • [25] Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor
    Mojsoska, Biljana
    Larsen, Sylvester
    Olsen, Dorte Aalund
    Madsen, Jonna Skov
    Brandslund, Ivan
    Alatraktchi, Fatima AlZahra'a
    SENSORS, 2021, 21 (02) : 1 - 11
  • [26] Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of Salmonella enterica in Chicken Broth
    Soares, Raquel R. A.
    Hjort, Robert G.
    Pola, Cicero C.
    Parate, Kshama
    Reis, Efraim L.
    Soares, Nilda F. F.
    McLamore, Eric S.
    Claussen, Jonathan C.
    Gomes, Carmen L.
    ACS SENSORS, 2020, 5 (07) : 1900 - 1911
  • [27] The probability of detection of SARS-CoV-2 in saliva
    Thompson, R. N.
    Cunniffe, N. J.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (04) : 1049 - 1050
  • [28] Saliva for Detection of SARS-CoV-2 Reply
    Wyllie, Anne L.
    Vogels, Chantal B. F.
    Grubaugh, Nathan D.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (09):
  • [29] A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification
    Zambry, Nor Syafirah
    Awang, Mohd Syafiq
    Beh, Khi Khim
    Hamzah, Hairul Hisham
    Bustami, Yazmin
    Obande, Godwin Attah
    Khalid, Muhammad Fazli
    Ozsoz, Mehmet
    Abd Manaf, Asrulnizam
    Aziah, Ismail
    LAB ON A CHIP, 2023, 23 (06) : 1622 - 1636
  • [30] Label-Free LSPR-Vertical Microcavity Biosensor for On-Site SARS-CoV-2 Detection
    Zheng, Yuqiao
    Bian, Sumin
    Sun, Jiacheng
    Wen, Liaoyong
    Rong, Guoguang
    Sawan, Mohamad
    Biosensors, 2022, 12 (03):