The Polar Decomposition And Vector Parametrization Of The Mueller Matrices

被引:0
|
作者
Dlugunovich, V. A. [1 ]
Kurochkin, Yu. A. [1 ]
机构
[1] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, BELARUS
关键词
Stokes parameters; Mueller matrices; biquaternions; vector-parameter; polar decomposition; group; semigroup; transformations;
D O I
10.1063/1.3382335
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It was demonstrated that presentation of the coherent matrix (polarization density matrix) of the electromagnetic beams as biquaternion corresponding to the four-vector of the pseudo Euclidean space with intensity and Stokes parameters as components gives the possibility for introducing of the group transformations of such values isomorphic to the S(3.1) group. These transformations are the subset of the set of polarization Mueller matrices creating algebraic structure of semigroup. Reduction of the semigroup of Mueller matrices to the group of transformations make it possible to use the vector parameterization of transformations of the group SO(3.1) for interpretation of polar decomposition of the Mueller matrices. In this approach in particular the elements of Mueller matrices corresponding to retarders and polarizers are more simple and natural connected with there eigenpolarizations.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 50 条
  • [31] Analysis of experimental depolarizing Mueller matrices through a hybrid decomposition
    Martin, Loic
    Le Brun, Guy
    Le Jeune, Bernard
    Pellen, Fabrice
    Rivet, Sylvain
    APPLIED OPTICS, 2015, 54 (01) : 27 - 36
  • [32] Vector and matrix states for Mueller matrices of nondepolarizing optical media
    Kuntman, Ertan
    Kuntman, M. Ali
    Arteaga, Oriol
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (01) : 80 - 86
  • [33] Symmetric decomposition of experimental depolarizing Mueller matrices in the degenerate case
    Vizet, Jeremy
    Ossikovski, Razvigor
    APPLIED OPTICS, 2018, 57 (05) : 1159 - 1167
  • [34] Product decomposition of measured Mueller matrices from the FLC based NIR Mueller Matrix Ellipsometer
    Stabo-Eeg, F.
    Ladstein, J.
    Kildemo, M.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 5, 2008, 5 (05): : 1093 - 1096
  • [35] The φJ polar decomposition of matrices with rank 2
    Dato-on, Jolle E.
    Merino, Dennis I.
    Paras, Agnes T.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (2-3) : 756 - 761
  • [36] Dynamical methods for polar decomposition and inversion of matrices
    Getz, NH
    Marsden, JE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 258 : 311 - 343
  • [37] Partial orderings, preorderings, and the polar decomposition of matrices
    Gross, J
    Hauke, J
    Markiewicz, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 289 (1-3) : 161 - 168
  • [38] Simultaneous polar decomposition of rectangular complex matrices
    Markiewicz, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 289 (1-3) : 279 - 284
  • [39] Correction of depolarization effect in Mueller matrix ellipsometry with polar decomposition method
    Li, Weiqi
    Zhang, Chuanwei
    Jiang, Hao
    Chen, Xiuguo
    Gu, Honggang
    Liu, Shiyuan
    MODELING ASPECTS IN OPTICAL METROLOGY V, 2015, 9526
  • [40] Mueller matrix polarimetry and polar decomposition of articular cartilage imaged in reflectance
    Huynh, Ruby N.
    Nehmetallah, George
    Raub, Christopher B.
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (08) : 5160 - 5178