A note on generalized Bernoulli numbers

被引:14
|
作者
Chen, KW [1 ]
Eie, M
机构
[1] Dahan Inst Technol, Shin Cheng 971, Hua Lian, Taiwan
[2] Natl Chung Cheng Univ, Chiayi 621, Taiwan
关键词
D O I
10.2140/pjm.2001.199.41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the zeta function Z ( P, chi, s) associated with a polynomial P ( X) is an element of R[X-1,...,X-r] and chi = (chi (1),...,chi (r)) with chi (j) non- trivial Dirichlet characters, defined by [GRAPHICS] which is absolutely convergent for sufficiently large Re s under some conditions on P ( X). We shall prove that the special value Z ( P,chi,- m) is completely determined by P-m (X) in a simple way. As an immediate application, we give a closed expression for sums of products of any number of generalized Bernoulli numbers.
引用
收藏
页码:41 / 59
页数:19
相关论文
共 50 条
  • [41] On the generalized Bernoulli numbers that belong to unequal characters
    Slavutskii, IS
    REVISTA MATEMATICA IBEROAMERICANA, 2000, 16 (03) : 459 - 475
  • [42] A SIMPLE EXPLICIT FORMULA FOR THE GENERALIZED BERNOULLI NUMBERS
    TODOROV, PG
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (13): : 665 - 666
  • [43] Values of a Class of Generalized Euler and Bernoulli Numbers
    Yang, Jin-Hua
    Zhao, Feng-Zhen
    ARS COMBINATORIA, 2011, 98 : 25 - 32
  • [44] On some new congruences for generalized Bernoulli numbers
    Kanemitsu, Shigeru
    Urbanowicz, Jerzy
    Wang, Nianliang
    ACTA ARITHMETICA, 2012, 155 (03) : 247 - 258
  • [45] A NOTE ON GENERALIZED FIBONACCI NUMBERS
    LEE, GY
    LEE, SG
    FIBONACCI QUARTERLY, 1995, 33 (03): : 273 - 278
  • [46] A NOTE ON THE GENERALIZED FIBONACCI NUMBERS
    LEE, JZ
    LEE, JS
    FIBONACCI QUARTERLY, 1988, 26 (01): : 14 - 19
  • [47] NOTE ON THE GENERALIZED LEONARDO NUMBERS
    Kuhapatanakul, Kantaphon
    FIBONACCI QUARTERLY, 2024, 62 (03): : 201 - 207
  • [48] A note on degenerate poly-Bernoulli numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2015
  • [49] A note on degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [50] A NOTE ON THE GENERATING FUNCTION OF p-BERNOULLI NUMBERS
    Kuba, Markus
    QUAESTIONES MATHEMATICAE, 2019, 42 (10) : 1373 - 1377