Flame retardant polyurethane foams with starch unit

被引:14
|
作者
Lubczak, Renata [1 ]
Broda, Daniel [2 ]
Kus-Liskiewicz, Malgorzata [2 ]
Szczech, Dominik [3 ]
Bobko, Ewa [4 ]
Debska, Bernardetta [5 ]
Szpilyk, Marzena [1 ]
Lubczak, Jacek [1 ]
机构
[1] Rzeszow Univ Technol, Fac Chem, Al Powstancow Warszawy 6, PL-35959 Rzeszow, Poland
[2] Univ Rzeszow, Coll Nat Sci, Inst Biol & Biotechnol, Pigonia St 1, PL-35310 Rzeszow, Poland
[3] SoBiCo GmbH, D-55566 Bad Sobernheim, Germany
[4] Univ Rzeszow, Coll Nat Sci, Inst Phys, Pigonia St 1, PL-35959 Rzeszow, Poland
[5] Rzeszow Univ Technol, Dept Bldg Engn, Poznanska St 2, PL-35084 Rzeszow, Poland
关键词
Starch; Hydroxyalkylation; Polyols; Polyurethane foams; Flame retardants; Biodegradation; PROPYLENE-OXIDE; PHOSPHORUS;
D O I
10.1016/j.polymertesting.2021.107395
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polyurethane foams with incorporated starch described in up to date literature have good functional properties except flame resistance. Their oxygen index falls within 19.3-20.5%, while flame rate is 2.25-12.50 mm/s. We have obtained and tested polyurethane foams with following flame retardants: melamine, and two phosphoric(V) acid esters: Fyrol PNX and Fyrol PCF. The functional properties of the flame retardant modified foams were compared with non-modified foams using horizontal flaming tests, determination of oxygen index and combustion in microcalorimeter. According to horizontal flaming tests all modified foams were self-extinguishing. The oxygen index of modified foams was within 22.9-24.4%. The foams could stand long-term heating at 150 degrees C temperature. Moreover, the polyurethane foams have a biodegradation potential.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Bioinspired Catecholic Flame Retardant Nanocoating for Flexible Polyurethane Foams
    Cho, Joon Hee
    Vasagar, Vivek
    Shanmuganathan, Kadhiravan
    Jones, Amanda R.
    Nazarenko, Sergei
    Ellison, Christopher J.
    CHEMISTRY OF MATERIALS, 2015, 27 (19) : 6784 - 6790
  • [12] Melamine Polyphosphate - the Reactive and Additive Flame Retardant for Polyurethane Foams
    Lubczak, Jacek
    Lubczak, Renata
    ACTA CHIMICA SLOVENICA, 2016, 63 (01) : 77 - 87
  • [13] Preparation and Application of Inherent Flame-Retardant Polyurethane Foams
    Fu, Zhicheng
    Feng, Luping
    Luo, Wei
    Wang, Ting
    An, Wenli
    Deng, Jinni
    Chen, Mingjun
    PROGRESS IN CHEMISTRY, 2024, 36 (05) : 696 - 708
  • [14] The thermal properties of rigid polyurethane foams treated with flame retardant
    Gao, Ming
    Yang, Yong-li
    FRONTIERS OF CHEMICAL ENGINEERING, METALLURGICAL ENGINEERING AND MATERIALS II, 2013, 803 : 30 - 34
  • [15] Milligram Scale Flammability Testing of Flame Retardant Polyurethane Foams
    Morgan, Alexander B.
    FIRE AND POLYMERS VI: NEW ADVANCES IN FLAME RETARDANT CHEMISTRY AND SCIENCE, 2012, 1118 : 445 - 458
  • [16] Recent Advances in Flame-Retardant Flexible Polyurethane Foams
    Chen, Min
    Yuan, Yao
    Wang, Wei
    Xu, Lulu
    FIRE-SWITZERLAND, 2025, 8 (03):
  • [17] Effect of microencapsulation flame retardant on flame retardancy and mechanical properties of rigid polyurethane foams
    Peng, Haoping
    Li, Jiaxin
    Gu, Yufei
    Wu, Changjun
    Liu, Ya
    Zhao, Yonggang
    Su, Xuping
    Li, Zhiwei
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (42)
  • [18] Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview
    Jiang, Yuping
    Yang, Hongyu
    Lin, Xiang
    Xiang, Simeng
    Feng, Xiaming
    Wan, Chaojun
    MATERIALS, 2023, 16 (07)
  • [19] CHLORINATED XYLENE DERIVATIVES FOR FLAME-RETARDANT RIGID POLYURETHANE FOAMS
    SLEZAK, FB
    ROSEN, I
    STALLINGS, JP
    INDUSTRIAL & ENGINEERING CHEMISTRY PRODUCT RESEARCH AND DEVELOPMENT, 1964, 3 (04): : 292 - &
  • [20] Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams
    Modesti, M
    Lorenzetti, A
    Simioni, F
    Camino, G
    POLYMER DEGRADATION AND STABILITY, 2002, 77 (02) : 195 - 202