Transcriptional mechanisms regulating Ca2+ homeostasis

被引:27
|
作者
Ritchie, Michael F. [1 ]
Zhou, Yandong [1 ]
Soboloff, Jonathan [1 ]
机构
[1] Temple Univ, Dept Biochem, Sch Med, Philadelphia, PA 19140 USA
关键词
WT1; EGR1; STIM1; SERCA; PMCA; Calcium; EARLY GROWTH RESPONSE-1; MEMBRANE CALCIUM-PUMP; ELEMENT-BINDING PROTEIN; PANCREATIC BETA-CELLS; C-MYC EXPRESSION; INDUCED CARDIAC-HYPERTROPHY; IMMEDIATE-EARLY GENES; SMOOTH-MUSCLE-CELLS; PLASMA-MEMBRANE; OXIDATIVE STRESS;
D O I
10.1016/j.ceca.2010.10.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Ca2+ is a dynamic cellular secondary messenger which mediates a vast array of cellular responses. Control over these processes is achieved via an extensive combination of pumps and channels which regulate the concentration of Ca2+ within not only the cytosol but also all intracellular compartments. Precisely how these pumps and channels are regulated is only partially understood, however, recent investigations have identified members of the Early Growth Response (EGR) family of zinc finger transcription factors as critical players in this process. The roles of several other transcription factors in control of Ca2+ homeostasis have also been demonstrated, including Wilms Tumor Suppressor 1 (WT1). Nuclear Factor of Activated T cells (NFAT) and c-myc. In this review, we will discuss not only how these transcription factors regulate the expression of the major proteins involved in control of Ca2+ homeostasis, but also how this transcriptional remodeling of Ca2+ homeostasis affects Ca2+ dynamics and cellular responses. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:314 / 321
页数:8
相关论文
共 50 条
  • [21] THE CONTROL OF NEURONAL CA2+ HOMEOSTASIS
    MILLER, RJ
    PROGRESS IN NEUROBIOLOGY, 1991, 37 (03) : 255 - 285
  • [22] Ca2+ homeostasis and cancer Preface
    Gautier, Mathieu
    Trebak, Mohamed
    Fleig, Andrea
    Vandier, Christophe
    Ouadid-Ahidouch, Halima
    CELL CALCIUM, 2019, 84
  • [23] Ca2+ homeostasis and regulation of ER Ca2+ in mammalian oocytes/eggs
    Wakai, Takuya
    Fissore, Rafael A.
    CELL CALCIUM, 2013, 53 (01) : 63 - 67
  • [24] Maternal aging affects mechanisms regulating Ca2+homeostasis in mammalian oocytes
    Ajduk, A.
    Czajkowska, K.
    HUMAN REPRODUCTION, 2017, 32 : 301 - 302
  • [26] SERCA2 knockout(+/-) mice develop compensatory mechanisms to maintain Ca2+ homeostasis
    Ji, Y
    Babu, J
    Shull, GE
    Periasamy, M
    CIRCULATION, 1999, 100 (18) : 764 - 764
  • [27] The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability
    Timothy S. Luongo
    Jonathan P. Lambert
    Polina Gross
    Mary Nwokedi
    Alyssa A. Lombardi
    Santhanam Shanmughapriya
    April C. Carpenter
    Devin Kolmetzky
    Erhe Gao
    Jop H. van Berlo
    Emily J. Tsai
    Jeffery D. Molkentin
    Xiongwen Chen
    Muniswamy Madesh
    Steven R. Houser
    John W. Elrod
    Nature, 2017, 545 : 93 - 97
  • [28] TRPC3 sensitivity to Ca2+:: A possible role in Ca2+ homeostasis?
    Spassova, MA
    Gill, DL
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 116A - 116A
  • [29] The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability
    Luongo, Timothy S.
    Lambert, Jonathan P.
    Gross, Polina
    Nwokedi, Mary
    Lombardi, Alyssa A.
    Shanmughapriya, Santhanam
    Carpenter, April C.
    Kolmetzky, Devin
    Gao, Erhe
    van Berlo, Jop H.
    Tsai, Emily J.
    Molkentin, Jeffery D.
    Chen, Xiongwen
    Madesh, Muniswamy
    Houser, Steven R.
    Elrod, John W.
    NATURE, 2017, 545 (7652) : 93 - +
  • [30] Overexpression of the mitochondrial Ca2+ uniporter in cones alters Ca2+ and mitochondrial homeostasis
    Hutto, Rachel
    Bisbach, Celia M.
    Hurley, James
    Brockerhoff, Susan E.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)