Maximum Likelihood Estimation for Mixed Fractional Vasicek Processes

被引:3
|
作者
Cai, Chun-Hao [1 ]
Huang, Yin-Zhong [2 ]
Sun, Lin [3 ]
Xiao, Wei-Lin [4 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Guangzhou 510275, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[3] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Peoples R China
[4] Zhejiang Univ, Sch Management, Hangzhou 310058, Peoples R China
关键词
maximum likelihood estimator; mixed fractional Vasicek model; asymptotic theory; Laplace transform; PARAMETER-ESTIMATION; VOLATILITY;
D O I
10.3390/fractalfract6010044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the problem of estimating the drift parameters in the mixed fractional Vasicek model, which is an extended model of the traditional Vasicek model. Using the fundamental martingale and the Laplace transform, both the strong consistency and the asymptotic normality of the maximum likelihood estimators are studied for all H & ISIN;(0,1), H & NOTEQUAL;1/2. On the other hand, we present that the MLE can be simulated when the Hurst parameter H > 1/2.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] MAXIMUM-LIKELIHOOD ESTIMATION FOR BRANCHING-PROCESSES WITH IMMIGRATION
    BHAT, BR
    ADKE, SR
    ADVANCES IN APPLIED PROBABILITY, 1981, 13 (03) : 498 - 509
  • [42] Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type
    Valdivieso L.
    Schoutens W.
    Tuerlinckx F.
    Statistical Inference for Stochastic Processes, 2009, 12 (1) : 1 - 19
  • [43] Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes
    Bo, Lijun
    Wang, Yongjin
    Yang, Xuewei
    Zhang, Guannan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 588 - 596
  • [44] Maximum likelihood estimation for multiscale Ornstein-Uhlenbeck processes
    Zhang, Fan
    Papavasiliou, Anastasia
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (06) : 807 - 835
  • [45] Bayesian and Maximum Likelihood Estimation for Gaussian Processes on an Incomplete Lattice
    Stroud, Jonathan R.
    Stein, Michael L.
    Lysen, Shaun
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (01) : 108 - 120
  • [46] Faster Maximum Likelihood Estimation Algorithms for Markovian Arrival Processes
    Okamura, Hiroyuki
    Dohi, Tadashi
    SIXTH INTERNATIONAL CONFERENCE ON THE QUANTITATIVE EVALUATION OF SYSTEMS, PROCEEDINGS, 2009, : 73 - 82
  • [47] MAXIMUM LIKELIHOOD ESTIMATION IN MULTITYPE BRANCHING PROCESSES WITH TERMINAL TYPES
    Daskalova, Nina
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (05): : 575 - 580
  • [48] MAXIMUM-LIKELIHOOD-ESTIMATION FOR GALTON-WATSON PROCESSES
    EPPS, TW
    SENETA, E
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (03) : 733 - 748
  • [49] MAXIMUM-LIKELIHOOD-ESTIMATION FOR STATIONARY POINT-PROCESSES
    PURI, ML
    TUAN, PD
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (03) : 541 - 545
  • [50] Maximum likelihood estimation for Gaussian processes under inequality constraints
    Bachoc, Francois
    Lagnoux, Agnes
    Lopez-Lopera, Andres F.
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 2921 - 2969