Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering

被引:158
|
作者
Prakash, J. [1 ]
Prema, D. [1 ]
Venkataprasanna, K. S. [1 ]
Balagangadharan, K. [2 ]
Selvamurugan, N. [2 ]
Venkatasubbu, G. Devanand [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Nanotechnol, Kattankulathur 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Sch Bioengn, Dept Biotechnol, Kattankulathur 603203, Tamil Nadu, India
关键词
Chitosan; Hydroxyapatite; Graphene oxide; Alkaline phosphatase; Antibacterial activity; Biocompatibility; IN-VITRO; OSTEOGENIC DIFFERENTIATION; GOLD NANOPARTICLES; OXIDE; HYDROXYAPATITE; SCAFFOLDS; CELLS; BIOCOMPATIBILITY; ANTIBACTERIAL; OSTEOBLASTS;
D O I
10.1016/j.ijbiomac.2020.03.095
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, polymer based biomaterials are utilized in medical fields including surgical sutures, drug delivery devices, tissue supports and implants for interior bone fixation. However, polymer based implants leads to the formation of bio-films that are highly susceptible tomicrobial adhesion. In this study, we have fabricated Chitosan/Polyvinyl alcohol/Graphene oxide/Hydroxyapatite/gold films for potential orthopedic application. Graphene oxide/Hydroxyapatite/gold nanocomposite (GO/HAP/Au) was synthesized by simple hydrothermal method and GO/HAP/Au nanocomposite incorporated polymeric film was fabricated using gel casting method. The morphology, phase composition, crystalline structure and chemical state of the nanocomposite were characterized using as XRD, HR-TEM, FE-SEM and FT-IR. The bio-films were found to be biocompatible with mouse mesenchymal cells and it enhanced osteoblast differentiation as evidenced by more alkaline phosphatase activity at the cellular level. Hence, these results suggested that the developed nanocomposites films are osteogenic potential for treating bone and bone-related diseases. Antibacterial analysis of the films shows high inhibition zones against Gram positive and Gram Negative bacteria (Escherichia coli, streptococcus mutans, Staphylococcus aureus and Pseudomonas aeruginosa). Thus, the obtained nanocomposites bio-films are highly biocompatible and it can be used for bone regeneration application. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 71
页数:10
相关论文
共 50 条
  • [41] Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering
    Amiryaghoubi, Nazanin
    Pesyan, Nader Noroozi
    Fathi, Marziyeh
    Omidi, Yadollah
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 162 : 1338 - 1357
  • [42] 3D construct of hydroxyapatite/zinc oxide/palladium nanocomposite scaffold for bone tissue engineering
    Fatemeh Heidari
    Fahimeh Sadat Tabatabaei
    Mehdi Razavi
    Reza Bazargan Lari
    Mina Tavangar
    Georgios E. Romanos
    Daryoosh Vashaee
    Lobat Tayebi
    Journal of Materials Science: Materials in Medicine, 2020, 31
  • [43] In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application
    Heidari, Fatemeh
    Bahrololoom, Mohammad E.
    Vashaee, Daryoosh
    Tayebi, Lobat
    CERAMICS INTERNATIONAL, 2015, 41 (02) : 3094 - 3100
  • [44] Synthesis and Cytocompatibility of Collagen/Hydroxyapatite Nanocomposite Scaffold for Bone Tissue Engineering
    Chen, Li
    Hu, Jingxiao
    Ran, Jiabing
    Shen, Xinyu
    Tong, Hua
    POLYMER COMPOSITES, 2016, 37 (01) : 81 - 90
  • [45] Characterization of enzymatic crosslinked hydroxyapatite/collagen nanocomposite for bone tissue engineering
    Wu, H. C.
    Tsai, Z. R.
    Wang, T. W.
    Sun, J. S.
    Shen, M. H.
    Wang, Y. C.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 196 - 197
  • [46] The electrospun poly(ε-caprolactone)/fluoridated hydroxyapatite nanocomposite for bone tissue engineering
    Johari, Narges
    Fathi, Mohammadhossein
    Fereshteh, Zeinab
    Kargozar, Saeid
    Samadikuchaksaraei, Ali
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2020, 31 (05) : 1019 - 1026
  • [47] Hydroxyapatite-Chitosan and Gelatin Based Scaffold for Bone Tissue Engineering
    Maji, Kanchan
    Dasgupta, Sudip
    TRANSACTIONS OF THE INDIAN CERAMIC SOCIETY, 2014, 73 (02) : 110 - 114
  • [48] Nanostructured Hydroxyapatite-Chitosan Composite Biomaterial for Bone Tissue engineering
    Venkatesan, Jayachandran
    Kim, Se Kwon
    RECENT TRENDS IN ADVANCED MATERIALS, 2012, 584 : 212 - +
  • [49] Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering
    Venkatesan, Jayachandran
    Pallela, Ramjee
    Bhatnagar, Ira
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1033 - 1042
  • [50] Fabrication of an electrochemical immunosensor based on a gold-hydroxyapatite nanocomposite-chitosan film
    Shen, Guangyu
    Cai, Chenbo
    Yang, Jifeng
    ELECTROCHIMICA ACTA, 2011, 56 (24) : 8272 - 8277