Multiple solutions of the Lp-Minkowski problem

被引:0
|
作者
He, Yan [1 ]
Li, Qi-Rui [2 ]
Wang, Xu-Jia [2 ]
机构
[1] Cent S Univ, Sch Math, Changsha 410075, Hunan, Peoples R China
[2] Australian Natl Univ, Ctr Math & Its Applicat, GPO Box 4, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
ANISOTROPIC CURVATURE FLOW; SIMILAR SHRINKING CURVES; NONUNIQUENESS; INEQUALITIES; EQUATIONS;
D O I
10.1007/s00526-016-1063-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of multiple solutions to the L-p-Minkowski problem. We prove if p < -n, then for any integer N > 0, there exists a smooth positive function f on S-n such that the L-p-Minkowski problem admits at least N different smooth solutions. We also construct nonsmooth, positive function f for which the L-p-Minkowski problem has infinitely many C-1,C-1 solutions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nonuniqueness of solutions to the Lp-Minkowski problem
    Jian, Huaiyu
    Lu, Jian
    Wang, Xu-Jia
    ADVANCES IN MATHEMATICS, 2015, 281 : 845 - 856
  • [2] On the Lp-Minkowski problem
    Lutwak, E
    Yang, D
    Zhang, GY
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (11) : 4359 - 4370
  • [3] Rotationally symmetric solutions to the Lp-Minkowski problem
    Lu, Jian
    Wang, Xu-Jia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) : 983 - 1005
  • [4] Periodic solutions of the Lp-Minkowski problem with indefinite weight
    Cheng, Zhibo
    Torres, Pedro J.
    MATHEMATICAL MODELLING AND CONTROL, 2022, 2 (01): : 7 - 12
  • [5] The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry
    Chou, Kai-Seng
    Wang, Xu-Jia
    ADVANCES IN MATHEMATICS, 2006, 205 (01) : 33 - 83
  • [6] On the planar Lp-Minkowski problem
    Du, Shi-Zhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 : 37 - 77
  • [7] Existence and bifurcation of periodic solutions to the Lp-Minkowski problem with indefinite weight
    Cheng, Zhibo
    Xia, Chenyang
    Yuan, Qigang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 534 (01)
  • [8] Anisotropic flow, entropy, and Lp-Minkowski problem
    Boroczky, Karoly J.
    Guan, Pengfei
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025, 77 (01): : 1 - 20
  • [9] The Lp-Minkowski problem for -n < p < 1
    Bianchi, Gabriele
    Boroczky, Karoly J.
    Colesanti, Andrea
    Yang, Deane
    ADVANCES IN MATHEMATICS, 2019, 341 : 493 - 535
  • [10] On solvability of two-dimensional Lp-Minkowski problem
    Umanskiy, V
    ADVANCES IN MATHEMATICS, 2003, 180 (01) : 176 - 186