On solvability of two-dimensional Lp-Minkowski problem

被引:70
|
作者
Umanskiy, V [1 ]
机构
[1] New York City Coll Technol, Dept Math, Brooklyn, NY 11201 USA
关键词
D O I
10.1016/S0001-8708(02)00101-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given p not equal 0 and a positive continuous function g, with g(x + T) = g(x), for some 0 < T < 1 and all real x, it is shown that for suitable choice of a constant C > 0 the functional F(u) = integral(0)(T) { (u' (x))(2) - u(2)(x) }dx + C(integral(0)(T) g(x)u(p)(x) dx)(2/p) has a minimizer in the class of positive functions u is an element of C-1 (R) for which u(x + T) = u(x) for all x is an element of R. This minimizer is used to prove the existence of a positive periodic solution y is an element of C-2 (R) of two-dimensional L-p-Minkowski problem y(1-p)(x)(y"(x) + y(x)) = g(x), where p is not an element of {0, 2}. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:176 / 186
页数:11
相关论文
共 50 条
  • [1] On the Lp-Minkowski problem
    Lutwak, E
    Yang, D
    Zhang, GY
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (11) : 4359 - 4370
  • [2] The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry
    Chou, Kai-Seng
    Wang, Xu-Jia
    ADVANCES IN MATHEMATICS, 2006, 205 (01) : 33 - 83
  • [3] On the planar Lp-Minkowski problem
    Du, Shi-Zhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 : 37 - 77
  • [4] Remarks on the 2-Dimensional Lp-Minkowski Problem
    Jiang, Mei-Yue
    ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 297 - 313
  • [5] Nonuniqueness of solutions to the Lp-Minkowski problem
    Jian, Huaiyu
    Lu, Jian
    Wang, Xu-Jia
    ADVANCES IN MATHEMATICS, 2015, 281 : 845 - 856
  • [6] Multiple solutions of the Lp-Minkowski problem
    He, Yan
    Li, Qi-Rui
    Wang, Xu-Jia
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (05)
  • [7] Rotationally symmetric solutions to the Lp-Minkowski problem
    Lu, Jian
    Wang, Xu-Jia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) : 983 - 1005
  • [8] Anisotropic flow, entropy, and Lp-Minkowski problem
    Boroczky, Karoly J.
    Guan, Pengfei
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025, 77 (01): : 1 - 20
  • [9] The Lp-Minkowski problem for -n < p < 1
    Bianchi, Gabriele
    Boroczky, Karoly J.
    Colesanti, Andrea
    Yang, Deane
    ADVANCES IN MATHEMATICS, 2019, 341 : 493 - 535
  • [10] Periodic solutions of the Lp-Minkowski problem with indefinite weight
    Cheng, Zhibo
    Torres, Pedro J.
    MATHEMATICAL MODELLING AND CONTROL, 2022, 2 (01): : 7 - 12