Generalized Hadamard well-posedness for infinite vector optimization problems

被引:6
|
作者
Peng, Z. Y. [1 ]
Long, X. J. [2 ]
Wang, X. F. [3 ]
Zhao, Y. B. [4 ]
机构
[1] Chongqing JiaoTong Univ, Coll Math & Stat, Chongqing, Peoples R China
[2] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing, Peoples R China
[3] Univ British Columbia, Dept Math, Kelowna, BC, Canada
[4] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
基金
加拿大自然科学与工程研究理事会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Infinite vector optimization problem; C-upper semicontinuous; generalized Hadamard well-posedness; semistrictly K-quasiconvex; efficient solution; cusco; SEMIINFINITE PROGRAMMING-PROBLEMS; QUASI-EQUILIBRIUM PROBLEMS; SENSITIVITY-ANALYSIS; PERTURBATIONS; STABILITY; EXISTENCE; MAPPINGS; SETS;
D O I
10.1080/02331934.2017.1349767
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the generalized Hadamard well-posedness of infinite vector optimization problems (IVOP). Without the assumption of continuity with respect to the first variable, the upper semicontinuity and closedness of constraint set mappings are established. Under weaker assumptions, sufficient conditions of generalized Hadamard well-posedness for IVOP are obtained under perturbations of both the objective function and the constraint set. We apply our results to the semi-infinite vector optimization problem and the semi-infinite multi-objective optimization problem.
引用
收藏
页码:1563 / 1575
页数:13
相关论文
共 50 条