Stable finite element methods with divergence augmentation for the Stokes problem?

被引:5
|
作者
Kim, K [1 ]
Lee, S [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
关键词
mixed finite element method; stabilization; Stokes problem;
D O I
10.1016/S0893-9659(00)00156-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mixed finite element approximation scheme with divergence augmentation for the Stokes problem is analyzed. We show that the Pk+1 - Pk-1 triangular elements or the Q(k+1) - Q(k-1) quadrilateral elements in R-2, k greater than or equal to 1, are stable with h(k+1/2) convergence in H-1-norm for velocity and h(k) convergence in L-2-norm for pressure. Moreover, h(k+1) convergence in H(div)-norm for velocity can be shown if the domain is convex. In R-3, the cross-grid Pk+1 - Pk-1 tetrahedral elements, k greater than or equal to 2, can be analyzed analogously for the approximation scheme with divergence augmentation and pressure stabilization. A numerical test which confirms the convergence analysis is presented. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 50 条
  • [41] An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem
    Wang, Xiuli
    Zhai, Qilong
    Wang, Ruishu
    Jari, Rabeea
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 : 20 - 32
  • [42] A stable enriched Galerkin element for the Stokes problem
    Chaabane, Nabil
    Girault, Vivette
    Riviere, Beatrice
    Thompson, Travis
    APPLIED NUMERICAL MATHEMATICS, 2018, 132 : 1 - 21
  • [43] UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS
    Xiaoping Xie Yangtze Center of Mathematics
    Journal of Computational Mathematics, 2008, 26 (03) : 437 - 455
  • [44] Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models
    Xie, Xiaoping
    Xu, Jinchao
    Xue, Guangri
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (03) : 437 - 455
  • [45] A hybridized finite element method for the Stokes problem
    Jeon, Y.
    Park, E. -J.
    Sheen, D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 2222 - 2232
  • [46] The quadrilateral 'Mini' finite element for the Stokes problem
    Bai, W
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 143 (1-2) : 41 - 47
  • [47] A FINITE ELEMENT METHOD FOR THE SURFACE STOKES PROBLEM
    Olshanskii, Maxim A.
    Quaini, Annalisa
    Reusken, Arnold
    Yushutin, Vladimir
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2492 - A2518
  • [48] A Divergence-Free Petrov-Galerkin Immersed Finite Element Method for Stokes Interface Problem
    Zhu, Na
    Rui, Hongxing
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (01)
  • [49] THE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENT FOR THE STOKES PROBLEM
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2730 - 2759
  • [50] ANALYSIS OF DIVERGENCE-PRESERVING UNFITTED FINITE ELEMENT METHODS FOR THE MIXED POISSON PROBLEM
    Lehrenfeld, Christoph
    Van Beeck, Tim
    Voulis, Igor
    MATHEMATICS OF COMPUTATION, 2024,