Editorial: Methods for Single-Cell and Microbiome Sequencing Data

被引:0
|
作者
Mallick, Himel [1 ]
An, Lingling [2 ,3 ,4 ]
Chen, Mengjie [5 ]
Wang, Pei [6 ,7 ]
Zhao, Ni [8 ]
机构
[1] Merck & Co Inc, Biostat & Res Decis Sci, Rahway, NJ 07065 USA
[2] Univ Arizona, Interdisciplinary Program Stat & Data Sci, Tucson, AZ USA
[3] Univ Arizona, Dept Epidemiol & Biostat, Tucson, AZ USA
[4] Univ Arizona, Dept Biosyst Engn, Tucson, AZ USA
[5] Univ Chicago, Dept Human Genet, Dept Med, Chicago, IL USA
[6] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY USA
[7] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY USA
[8] Johns Hopkins Univ, Dept Biostat, Bloomberg Sch Publ Hlth, Baltimore, MD USA
关键词
microbiome; single-cell; omics; data science; multi-omics; statistics; biostatistics; computational biology;
D O I
10.3389/fgene.2022.920191
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Splatter: simulation of single-cell RNA sequencing data
    Luke Zappia
    Belinda Phipson
    Alicia Oshlack
    Genome Biology, 18
  • [42] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244
  • [43] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    Computational and Structural Biotechnology Journal, 2021, 19 : 3234 - 3244
  • [44] Automatic cell type identification methods for single-cell RNA sequencing
    Xie, Bingbing
    Jiang, Qin
    Mora, Antonio
    Li, Xuri
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 5874 - 5887
  • [45] Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information
    Liu, Zhaoyang
    Sun, Dongqing
    Wang, Chenfei
    GENOME BIOLOGY, 2022, 23 (01)
  • [46] Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information
    Zhaoyang Liu
    Dongqing Sun
    Chenfei Wang
    Genome Biology, 23
  • [47] A review on integration methods for single-cell data
    Pan D.
    Li H.
    Liu H.
    Sun X.
    1600, West China Hospital, Sichuan Institute of Biomedical Engineering (38): : 1010 - 1017
  • [48] Quantitative assessment of single-cell RNA-sequencing methods
    Angela R Wu
    Norma F Neff
    Tomer Kalisky
    Piero Dalerba
    Barbara Treutlein
    Michael E Rothenberg
    Francis M Mburu
    Gary L Mantalas
    Sopheak Sim
    Michael F Clarke
    Stephen R Quake
    Nature Methods, 2014, 11 : 41 - 46
  • [49] Quantitative assessment of single-cell RNRNA-sequencing methods
    Wu, Angela R.
    Neff, Norma F.
    Kalisky, Tomer
    Dalerba, Piero
    Treutlein, Barbara
    Rothenberg, Michael E.
    Mburu, Francis M.
    Mantalas, Gary L.
    Sim, Sopheak
    Clarke, Michael F.
    Quake, Stephen R.
    NATURE METHODS, 2014, 11 (01) : 41 - +
  • [50] Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data
    Mallik, Saurav
    Mukhopadhyay, Anirban
    Li, Aimin
    Odom, Gabriel J.
    Tomar, Namrata
    FRONTIERS IN GENETICS, 2023, 13