Intentional Deep Overfit Learning (IDOL): A Novel Deep Learning Strategy for Adaptive Radiation Therapy

被引:0
|
作者
Chun, J. [1 ]
Park, J. [2 ]
Olberg, S. [2 ,3 ]
Zhang, Y. [2 ]
Nguyen, D. [2 ]
Wang, J. [2 ]
Kim, J. [1 ]
Jiang, S. [2 ]
机构
[1] Yonsei Univ, Dept Radiat Oncol, Coll Med, Seoul, South Korea
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Med Artificial Intelligence & Automat MAIA Lab, Dallas, TX 75390 USA
[3] Washington Univ, Dept Biomed Engn, St Louis, MO 63110 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
MO-EF-TRAC
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Deep Learning for Neuroimaging Segmentation with a Novel Data Augmentation Strategy
    Wu, Wenshan
    Lu, Yuhao
    Mane, Ravikiran
    Guan, Cuntai
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1516 - 1519
  • [22] A novel forecasting strategy for improving the performance of deep learning models
    Livieris, Ioannis E.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [23] sqFm: a novel adaptive optimization scheme for deep learning model
    Bhakta, Shubhankar
    Nandi, Utpal
    Mondal, Madhab
    Mahapatra, Kuheli Ray
    Chowdhuri, Partha
    Pal, Pabitra
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 1 - 1
  • [24] Novel Applications of Deep Learning Hidden Features for Adaptive Testing
    Xiao, Bingjun
    Xiong, Jinjun
    Shi, Yiyu
    2016 21ST ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2016, : 743 - 748
  • [25] Adaptive trajectory-constrained exploration strategy for deep reinforcement learning
    Wang, Guojian
    Wu, Faguo
    Zhang, Xiao
    Guo, Ning
    Zheng, Zhiming
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [26] An adaptive deep Q-learning strategy for handwritten digit recognition
    Qiao, Junfei
    Wang, Gongming
    Li, Wenjing
    Chen, Min
    NEURAL NETWORKS, 2018, 107 : 61 - 71
  • [27] Research on adaptive learning rate algorithm in deep learning
    Jiang W.
    Peng J.
    Ye G.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47 (05): : 79 - 83
  • [28] A Deep Learning-Based Method for Predicting Volumes of Nasopharyngeal Carcinoma for Adaptive Radiation Therapy Treatment
    Daoud, Bilel
    Morooka, Ken'ichi
    Miyauchi, Shoko
    Kurazume, Ryo
    Mnejja, Wafa
    Farhat, Leila
    Daoud, Jamel
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3256 - 3263
  • [29] Improving CBCT Quality to CT Level Using Deep-Learning Method for Adaptive Radiation Therapy
    Zhang, Y.
    Yue, N.
    Su, M.
    Ding, Y.
    Liu, B.
    Zhang, Y.
    Zhou, Y.
    Nie, K.
    MEDICAL PHYSICS, 2019, 46 (06) : E186 - E186
  • [30] Clinical evaluation of a deep learning CBCT auto-segmentation software for prostate adaptive radiation therapy
    Radici, Lorenzo
    Piva, Cristina
    Borca, Valeria Casanova
    Cante, Domenico
    Ferrario, Silvia
    Paolini, Marina
    Cabras, Laura
    Petrucci, Edoardo
    Franco, Pierfrancesco
    La Porta, Maria Rosa
    Pasquino, Massimo
    CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2024, 47