Simultaneous Estimation of Multiple Land-Surface Parameters From VIIRS Optical-Thermal Data

被引:13
|
作者
Ma, Han [1 ,2 ]
Liang, Shunlin [2 ]
Xiao, Zhiqiang [1 ]
Wang, Dongdong [2 ]
机构
[1] Beijing Normal Univ, Inst Remote Sensing Sci & Engn, Fac Geog Sci,Key Lab Remote Sensing, Beijing Engn Res Ctr Global Land Remote Sensing P, Beijing 100875, Peoples R China
[2] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
Inversion; land-surface parameter; Visible Infrared Imaging Radiometer Suite (VIIRS); SNOW-COVER; BARE SOIL; MODIS; EMISSIVITY; VEGETATION; PRODUCTS; ALBEDO; INDEX;
D O I
10.1109/LGRS.2017.2779040
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Traditional methods for estimating land-surface parameters from remotely sensed data generally focus on a single parameter with a specific spectral region, resulting in physical and spatiotemporal inconsistencies in current satellite products. We recently proposed a unified inversion scheme to estimate a suite of parameters simultaneously from both visible and near-infrared and thermal-infrared MODIS data. In this letter, we implemented this scheme to estimate six time-series parameters [leaf area index, fraction of absorbed photosynthetically active radiation, surface albedo, land-surface emissivity, land-surface temperature (LST), and upwelling longwave radiation (LWUP)] from the Visible Infrared Imaging Radiometer Suite (VIIRS) data. Several components of these schemes are refined, including the incorporation of a snow bidirectional reflectance distribution function model, determination of the best band combination, and better estimation of the snow-covered surface emissivity by accounting for the snow-cover fraction. Validation using the measurements at 12 sites of SURFRAD, CarboEuropeIP, and FLUXNET, and intercomparisons with MODIS and Global Land-Surface Satellite products, are carried out: the retrieved albedo, LST, and LWUP achieved accuracies (R-2) of 0.77, 0.96, and 0.95, root mean square errors of 0.06, 2.9 K, and 18.3 W/m(2), and biases of 0.01, 0.09 K, and -0.08 W/m(2), respectively. The retrieved parameters can achieve comparable or higher accuracy than existing products, which indicates that the unified algorithm can be applied effectively to the VIIRS data with high physical and temporal consistency and accuracy.
引用
收藏
页码:156 / 160
页数:5
相关论文
共 50 条
  • [31] Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters
    Shukla, A.
    Arora, M. K.
    Gupta, R. P.
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (07) : 1378 - 1387
  • [32] Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery
    Zhang, Xiaoyang
    Jayavelu, Senthilnath
    Liu, Lingling
    Friedl, Mark A.
    Henebry, Geoffrey M.
    Liu, Yan
    Schaaf, Crystal B.
    Richardson, Andrew D.
    Gray, Joshua
    AGRICULTURAL AND FOREST METEOROLOGY, 2018, 256 : 137 - 149
  • [33] Atmospheric corrections to thermal IR data for estimation of land surface temperature
    Kant Y.
    Badarinath K.V.S.
    Journal of the Indian Society of Remote Sensing, 1998, 26 (3) : 113 - 120
  • [34] Comparisons of global land surface seasonality and phenology derived from AVHRR, MODIS, and VIIRS data
    Zhang, Xiaoyang
    Liu, Lingling
    Yan, Dong
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2017, 122 (06) : 1506 - 1525
  • [35] ESTIMATION OF LAND SURFACE TEMPERATURE FROM UNMANNED AERIAL VEHICLE LOADED THERMAL IMAGER DATA
    Si, Menglin
    Tang, Bo-Hui
    Li, Zhao-Liang
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1210 - 1213
  • [36] Estimation of optical parameters of yellow sand dust clouds over land surface
    Kusaka, T
    Mori, SH
    Suzuki, T
    Takenaka, H
    REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE VI, 2002, 4539 : 87 - 93
  • [37] A neural network method for retrieving land-surface temperature from AMSR-E data
    Mao, Kebiao
    Wang, Daolong
    Li, Zirui
    Zhang, Lixin
    Zhou, Qingbo
    Tang, Huajun
    Li, Dandan
    Gaojishu Tongxin/Chinese High Technology Letters, 2009, 19 (11): : 1195 - 1200
  • [38] DEVELOPMENT OF PRACTICAL MULTIBAND ALGORITHMS FOR ESTIMATING LAND-SURFACE TEMPERATURE FROM EOS/MODIS DATA
    DOZIER, J
    WAN, Z
    REMOTE SENSING OF EARTHS SURFACE AND ATMOSPHERE, 1993, 14 (03): : 81 - 90
  • [39] Land-surface controls on afternoon precipitation diagnosed from observational data: uncertainties and confounding factors
    Guillod, B. P.
    Orlowsky, B.
    Miralles, D. G.
    Teuling, A. J.
    Blanken, P. D.
    Buchmann, N.
    Ciais, P.
    Ek, M.
    Findell, K. L.
    Gentine, P.
    Lintner, B. R.
    Scott, R. L.
    Van den Hurk, B.
    Seneviratne, S. I.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (16) : 8343 - 8367
  • [40] A practical split-window algorithm for retrieving land-surface temperature from MODIS data
    Mao, K
    Qin, Z
    Shi, J
    Gong, P
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (15) : 3181 - 3204