Oxidation of free-standing and supported borophene

被引:37
|
作者
Alvarez-Quiceno, J. C. [1 ]
Miwa, R. H. [2 ]
Dalpian, G. M. [1 ]
Fazzio, A. [1 ]
机构
[1] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Sao Paulo, Brazil
[2] Univ Fed Uberlandia, Inst Fis, Uberlandia, MG, Brazil
来源
2D MATERIALS | 2017年 / 4卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
borophene; oxidation; singlet-triplet transition; 2-DIMENSIONAL BORON; ELECTRONIC-PROPERTIES; MOS2; TRANSISTORS; GRAPHENE;
D O I
10.1088/2053-1583/aa55b6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Crystalline 2D boron sheets, known as borophene, are the most recently-discovered type of 2D materials, and very little is known about them. Different configurations of borophene have been reported stable when grown on Ag(1 1 1) surface under well controlled conditions. One of this configurations is partially oxidized while the other one remains quite inert to oxidation when exposed to ambient conditions. In this work, the oxidation process of the free-standing and Ag(1 1 1)-supported borophene is modeled using first-principles calculations based on density functional theory (DFT). On the free-standing case, the oxygen molecule may go through a triplet to singlet transition, followed by a barrierless oxidation process. This transition is not observed upon the presence of the Ag(1 1 1) surface, what accelerates the oxidation process. We also propose that the different structures of borophene reported in the literature can be understood by this oxidation process. Oxidation of the buckled structure could induce the planar structure with an ordered distribution of vacancies.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Free-Standing, Flexible, Superomniphobic Films
    Vahabi, Hamed
    Wang, Wei
    Movafaghi, Sanli
    Kota, Arun K.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (34) : 21962 - 21967
  • [42] Ordering of free-standing Co nanoparticles
    Leo, G
    Chushkin, Y
    Luby, S
    Majkova, E
    Kostic, I
    Ulmeanu, M
    Luches, A
    Giersig, M
    Hilgendorff, M
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2003, 23 (6-8): : 949 - 952
  • [43] Colloids on free-standing smectic films
    Conradi, M.
    Ziherl, P.
    Sarlah, A.
    Musevic, I.
    EUROPEAN PHYSICAL JOURNAL E, 2006, 20 (02): : 231 - 236
  • [44] Free-standing, flexible, superomniphobic films
    Vahabi, Hamed
    Wang, Wei
    Movafaghi, Sanli
    Kota, Arun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [45] On the injectability of free-standing magnetic nanofilms
    Taccola, Silvia
    Pensabene, Virginia
    Fujie, Toshinori
    Takeoka, Shinji
    Pugno, Nicola M.
    Mattoli, Virgilio
    BIOMEDICAL MICRODEVICES, 2017, 19 (03)
  • [46] Fabrication of free-standing diamond membranes
    Salvadori, MC
    Cattani, M
    Mammana, V
    Monteiro, OR
    Ager, JW
    Brown, IG
    THIN SOLID FILMS, 1996, 290 : 157 - 160
  • [47] On the injectability of free-standing magnetic nanofilms
    Silvia Taccola
    Virginia Pensabene
    Toshinori Fujie
    Shinji Takeoka
    Nicola M. Pugno
    Virgilio Mattoli
    Biomedical Microdevices, 2017, 19
  • [48] Thermal fluctuations of free-standing graphene
    Braghin, F. L.
    Hasselmann, N.
    PHYSICAL REVIEW B, 2010, 82 (03)
  • [49] Immunoassay on Free-Standing Electrospun Membranes
    Wu, Dapeng
    Han, Daewoo
    Steckl, Andrew J.
    ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (01) : 252 - 258
  • [50] The toughness of free-standing CVD diamond
    A. R. Davies
    J. E. Field
    K. Takahashi
    K. Hada
    Journal of Materials Science, 2004, 39 : 1571 - 1574