Higher-Order Weakly Generalized Adjacent Epiderivatives and Applications to Duality of Set-Valued Optimization (vol 2009, pg 18, 2009)

被引:1
|
作者
Wang, Qi-Lin [1 ]
机构
[1] Chongqing Jiaotong Univ, Coll Sci, Chongqing 400074, Peoples R China
关键词
D O I
10.1155/2011/817965
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An important property is established for higher-order weakly generalized adjacent epiderivatives. This corrects an earlier result by Wang and Li (2009).
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Higher-order optimality conditions for set-valued optimization
    Li, S. J.
    Teo, K. L.
    Yang, X. Q.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (03) : 533 - 553
  • [32] Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization
    Wang, Q. L.
    Li, S. J.
    Teo, K. L.
    OPTIMIZATION LETTERS, 2010, 4 (03) : 425 - 437
  • [33] Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization
    Q. L. Wang
    S. J. Li
    K. L. Teo
    Optimization Letters, 2010, 4 : 425 - 437
  • [34] New Generalized Second-Order Contingent Epiderivatives and Set-Valued Optimization Problems
    Li, S. J.
    Zhu, S. K.
    Teo, K. L.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) : 587 - 604
  • [35] New Generalized Second-Order Contingent Epiderivatives and Set-Valued Optimization Problems
    S. J. Li
    S. K. Zhu
    K. L. Teo
    Journal of Optimization Theory and Applications, 2012, 152 : 587 - 604
  • [36] GENERALIZED HIGHER-ORDER OPTIMALITY CONDITIONS FOR SET-VALUED OPTIMIZATION UNDER HENIG EFFICIENCY
    Wang, Q. L.
    Li, S. J.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (7-8) : 849 - 869
  • [37] Erratum to: Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization
    Q. L. Wang
    S. J. Li
    K. L. Teo
    Optimization Letters, 2012, 6 : 1579 - 1581
  • [38] Higher-order Optimality Conditions and Duality for Approximate Solutions in Non-convex Set-valued Optimization
    Guo-lin Yu
    Tian-tian Gong
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 620 - 628
  • [39] Higher-order Optimality Conditions and Duality for Approximate Solutions in Non-convex Set-valued Optimization
    Yu, Guo-lin
    Gong, Tian-tian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (03): : 620 - 628
  • [40] A Kind of New Higher-Order Mond-Weir Type Duality for Set-Valued Optimization Problems
    He, Liu
    Wang, Qi-Lin
    Wen, Ching-Feng
    Zhang, Xiao-Yan
    Li, Xiao-Bing
    MATHEMATICS, 2019, 7 (04):