Estimation for High-Dimensional Linear Mixed-Effects Models Using l1-Penalization

被引:112
|
作者
Schelldorfer, Juerg [1 ]
Buehlmann, Peter [1 ]
Van De Geer, Sara [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
adaptive Lasso; coordinate gradient descent; coordinatewise optimization; Lasso; random-effects model; variable selection; variance components; VARIABLE SELECTION; COORDINATE DESCENT; REGRESSION-MODELS; DANTZIG SELECTOR; ADAPTIVE LASSO; SPARSITY;
D O I
10.1111/j.1467-9469.2011.00740.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an l(1)-penalized estimation procedure for high-dimensional linear mixed-effects models. The models are useful whenever there is a grouping structure among high-dimensional observations, that is, for clustered data. We prove a consistency and an oracle optimality result and we develop an algorithm with provable numerical convergence. Furthermore, we demonstrate the performance of the method on simulated and a real high-dimensional data set.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 50 条
  • [31] Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models
    Zhang, Xinyu
    Yu, Dalei
    Zou, Guohua
    Liang, Hua
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (516) : 1775 - 1790
  • [32] High-dimensional inference robust to outliers with l1-norm penalization
    Beyhum, Jad
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (16) : 5866 - 5876
  • [33] Variational Bayesian Inference in High-Dimensional Linear Mixed Models
    Yi, Jieyi
    Tang, Niansheng
    MATHEMATICS, 2022, 10 (03)
  • [34] Scalable Algorithms for Learning High-Dimensional Linear Mixed Models
    Tan, Zilong
    Roche, Kimberly
    Zhou, Xiang
    Mukherjee, Sayan
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 259 - 268
  • [35] Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution
    Pinheiro, JC
    Liu, CH
    Wu, YN
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (02) : 249 - 276
  • [36] Flexible regularized estimation in high-dimensional mixed membership models
    Marco, Nicholas
    Senturk, Damla
    Jeste, Shafali
    Distefano, Charlotte C.
    Dickinson, Abigail
    Telesca, Donatello
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 194
  • [37] Linear-mixed effects models for feature selection in high-dimensional NMR spectra
    Mei, Yajun
    Kim, Seoung Bum
    Tsui, Kwok-Leung
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 4703 - 4708
  • [38] Double penalized variable selection for high-dimensional partial linear mixed effects models
    Yang, Yiping
    Luo, Chuanqin
    Yang, Weiming
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 204
  • [39] Maximum Likelihood for Variance Estimation in High-Dimensional Linear Models
    Dicker, Lee H.
    Erdogdu, Murat A.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 159 - 167
  • [40] Estimation of high-dimensional linear factor models with grouped variables
    Heaton, Chris
    Solo, Victor
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) : 348 - 367