Estimation for High-Dimensional Linear Mixed-Effects Models Using l1-Penalization

被引:112
|
作者
Schelldorfer, Juerg [1 ]
Buehlmann, Peter [1 ]
Van De Geer, Sara [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
adaptive Lasso; coordinate gradient descent; coordinatewise optimization; Lasso; random-effects model; variable selection; variance components; VARIABLE SELECTION; COORDINATE DESCENT; REGRESSION-MODELS; DANTZIG SELECTOR; ADAPTIVE LASSO; SPARSITY;
D O I
10.1111/j.1467-9469.2011.00740.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an l(1)-penalized estimation procedure for high-dimensional linear mixed-effects models. The models are useful whenever there is a grouping structure among high-dimensional observations, that is, for clustered data. We prove a consistency and an oracle optimality result and we develop an algorithm with provable numerical convergence. Furthermore, we demonstrate the performance of the method on simulated and a real high-dimensional data set.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 50 条
  • [1] GLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using l1-Penalization
    Schelldorfer, Juerg
    Meier, Lukas
    Buehlmann, Peter
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (02) : 460 - 477
  • [2] Adjusting for high-dimensional covariates in sparse precision matrix estimation by l1-penalization
    Yin, Jianxin
    Li, Hongzhe
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 365 - 381
  • [3] Doubly regularized estimation and selection in linear mixed-effects models for high-dimensional longitudinal data
    Li, Yun
    Wang, Sijian
    Song, Peter X-K
    Wang, Naisyin
    Zhou, Ling
    Zhu, Ji
    STATISTICS AND ITS INTERFACE, 2018, 11 (04) : 721 - 737
  • [4] Inference and Estimation for Random Effects in High-Dimensional Linear Mixed Models
    Law, Michael
    Ritov, Ya'acov
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (543) : 1682 - 1691
  • [5] Inference for High-Dimensional Linear Mixed-Effects Models: A Quasi-Likelihood Approach
    Li, Sai
    Cai, T. Tony
    Li, Hongzhe
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 1835 - 1846
  • [6] Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM algorithm
    Marion Naveau
    Guillaume Kon Kam King
    Renaud Rincent
    Laure Sansonnet
    Maud Delattre
    Statistics and Computing, 2024, 34
  • [7] Comments on: l1-penalization for mixture regression models
    Antoniadis, Anestis
    TEST, 2010, 19 (02) : 257 - 258
  • [8] Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM algorithm
    Naveau, Marion
    King, Guillaume Kon Kam
    Rincent, Renaud
    Sansonnet, Laure
    Delattre, Maud
    STATISTICS AND COMPUTING, 2024, 34 (01)
  • [9] Comment on: l1-penalization for mixture regression models
    Lugosi, Gabor
    TEST, 2010, 19 (02) : 259 - 263
  • [10] l1-penalized linear mixed-effects models for high dimensional data with application to BCI
    Fazli, Siamac
    Danoczy, Marton
    Schelldorfer, Juerg
    Mueller, Klaus-Robert
    NEUROIMAGE, 2011, 56 (04) : 2100 - 2108