Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system

被引:135
|
作者
Juarez, JC [1 ]
Taylor, HF [1 ]
机构
[1] 3128 Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
关键词
D O I
10.1364/OL.30.003284
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A distributed sensor system for detecting and locating intruders based on a phase-sensitive optical time-domain reflectometer (phi-OTDR) that utilizes polarization discrimination is described. The sensing element is a single-mode telecommunications fiber in a 3 mm diameter cable buried along a monitored perimeter in a 20-46 em deep, 10 em wide trench in clay soil. Light pulses from a continuous-wave Er fiber Fabry-Perot laser with a narrow (<3 kHz) instantaneous linewidth and low (a few Kilohertz per second) frequency drift are injected into one end of the fiber, and the orthogonal polarizations of the backscattered light are monitored with separate receivers. Localized phase changes in the optical carrier are sensed by subtraction of a phi-OTDR trace from an earlier stored trace. In field tests with a monitored length of 12 km, detection of intruders on foot as far as 4.5 m from the cable line was consistently achieved. (c) 2005 Optical Society of America
引用
收藏
页码:3284 / 3286
页数:3
相关论文
共 50 条
  • [31] Effect of strong local stretching of sensing fibre on the operation of a phase-sensitive optical time-domain reflectometer
    Bengalskii, D. M.
    Kharasov, D. R.
    Fomiryakov, E. A.
    Nikitin, S. P.
    Nanii, O. E.
    Treshchikov, V. N.
    QUANTUM ELECTRONICS, 2021, 51 (02) : 175 - 183
  • [32] A novel intrusion signal processing method for phase-sensitive optical time-domain reflectometry (Φ-OTDR)
    Wu, Huijuan
    Li, Xiaoyu
    Peng, Zhengpu
    Rao, Yunjiang
    23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [33] Phase-Sensitive Optical Time-Domain Reflectometric System Based on Optical Synchronous Heterodyne
    Lin, Ting-Ting
    Bai, Yu-Xin
    Zhong, Zhi-Cheng
    Gao, Xu
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 12130 - 12136
  • [34] Performance enhancement method for phase-sensitive optical time-domain reflectometer system based on suppression of fading induced false alarms
    Zhang, Xuping
    Wang, Qing
    Xiong, Fei
    Zhang, Dao
    Chen, Mengmeng
    Chen, XiaoHong
    Ding, ZheWen
    Zhang, Yuhao
    Zhou, Tong
    Wang, Feng
    Zhang, Yixin
    OPTICAL ENGINEERING, 2020, 59 (04)
  • [35] Distributed Fiber Voice Sensor Based on Phase-Sensitive Optical Time-Domain Reflectometry
    Wu, Yuqing
    Gan, Jiulin
    Li, Qingyu
    Zhang, Zhishen
    Heng, Xiaobo
    Yang, Zhongmin
    IEEE PHOTONICS JOURNAL, 2015, 7 (06):
  • [36] The Maximum Operating Range of a Distributed Sensor Based on a Phase-Sensitive Optical Time-Domain Reflectometer Utilizing Telecommunication Fiber with Reflective Centers
    Kharasov, D. R.
    Bengalskii, D. M.
    Fomiryakov, E. A.
    Nanii, O. E.
    Bukharin, M. A.
    Nikitin, S. P.
    Treshchikov, V. N.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2021, 76 (03) : 167 - 175
  • [37] 151-km single-end phase-sensitive optical time-domain reflectometer assisted by optical repeater
    Song, Muping
    Zhu, Weiji
    Xia, Qiaolan
    Yin, Cong
    Lu, Yan
    Wu, Ying
    Zhuang, Shouwang
    OPTICAL ENGINEERING, 2018, 57 (02)
  • [38] The Maximum Operating Range of a Distributed Sensor Based on a Phase-Sensitive Optical Time-Domain Reflectometer Utilizing Telecommunication Fiber with Reflective Centers
    D. R. Kharasov
    D. M. Bengalskii
    E. A. Fomiryakov
    O. E. Nanii
    M. A. Bukharin
    S. P. Nikitin
    V. N. Treshchikov
    Moscow University Physics Bulletin, 2021, 76 : 167 - 175
  • [39] Phase-sensitive optical time-domain reflectometry with Brillouin amplification
    Wang, Z. N.
    Li, J.
    Fan, M. Q.
    Zhang, L.
    Peng, F.
    Wu, H.
    Zeng, J. J.
    Zhou, Y.
    Rao, Y. J.
    OPTICS LETTERS, 2014, 39 (15) : 4313 - 4316
  • [40] Extending the operation range of a phase-sensitive optical time-domain reflectometer by using fibre with chirped Bragg gratings
    Kharasov, D. R.
    Bengalskii, D. M.
    Vyatkin, M. Yu.
    Nanii, O. E.
    Fomiryakov, E. A.
    Nikitin, S. P.
    Popov, S. M.
    Chamorovsky, Yu. K.
    Treshchikov, V. N.
    QUANTUM ELECTRONICS, 2020, 50 (05) : 510 - 513