Comparison of pitch angle diffusion by turbulent and monochromatic whistler waves

被引:46
|
作者
Albert, JM [1 ]
机构
[1] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02467 USA
[2] USAF, Res Lab, Hanscom AFB, MA USA
关键词
D O I
10.1029/2000JA000304
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A recent Hamiltonian analysis of magnetized test particles acted on by a small monochromatic wave is compared to a quasi-linear formulation of pitch angle diffusion by a turbulent spectrum of whistler waves. The quasi-linear expression has previously been applied to anthropogenic VLF transmissions to conclude that they dominate pitch angle diffusion of inner radiation belt electrons. However, because these transmissions are very narrow in frequency range, the monochromatic approach might be more appropriate. It is shown analytically that the monochromatic limit of the quasi-linear pitch angle diffusion coefficient reduces to the same expression as the diffusive regime of the Hamiltonian treatment. Agreement of the Hamiltonian pitch angle diffusion coefficient with the quasi-linear values is verified numerically using realistic parameters for the spread in frequency and wave-normal angle. As an aside, a simple, alternate derivation of quasi-linear diffusion coefficients is given.
引用
收藏
页码:8477 / 8482
页数:6
相关论文
共 50 条
  • [41] Pitch angle diffusion as seen by CRRES
    Albert, JM
    INNER MAGNETOSPHERE DYNAMICS, 2000, 25 (12): : 2343 - 2346
  • [42] PITCH ANGLE DIFFUSION BY BOUNCE RESONANCE
    VISWANATHAN, KS
    RENUKA, G
    PLANETARY AND SPACE SCIENCE, 1978, 26 (01) : 75 - 80
  • [43] Non-monochromatic whistler waves detected by Kaguya on the dayside surface of the moon
    Tomoko Nakagawa
    Futoshi Takahashi
    Hideo Tsunakawa
    Hidetoshi Shibuya
    Hisayoshi Shimizu
    Masaki Matsushima
    Earth, Planets and Space, 2011, 63 : 37 - 46
  • [44] Observations of Whistler Waves in the Magnetic Reconnection Diffusion Region
    Huang, S. Y.
    Yuan, Z. G.
    Fu, H. S.
    Vaivads, A.
    Sahraoui, F.
    Khotyaintsev, Y. V.
    Retino, A.
    Zhou, M.
    Graham, D.
    Fujimoto, K.
    Deng, X. H.
    Ni, B. B.
    Pang, Y.
    Fu, S.
    Wang, D. D.
    2018 2ND URSI ATLANTIC RADIO SCIENCE MEETING (AT-RASC), 2018,
  • [45] MMS observations of whistler waves in electron diffusion region
    Cao, D.
    Fu, H. S.
    Cao, J. B.
    Wang, T. Y.
    Graham, D. B.
    Chen, Z. Z.
    Peng, F. Z.
    Huang, S. Y.
    Khotyaintsev, Y. V.
    Andre, M.
    Russell, C. T.
    Giles, B. L.
    Lindqvist, P. -A.
    Torbert, R. B.
    Ergun, R. E.
    Le Contel, O.
    Burch, J. L.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (09) : 3954 - 3962
  • [46] A new diffusion matrix for whistler mode chorus waves
    Horne, Richard B.
    Kersten, Tobias
    Glauert, Sarah A.
    Meredith, Nigel P.
    Boscher, Daniel
    Sicard-Piet, Angelica
    Thorne, Richard M.
    Li, Wen
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (10) : 6302 - 6318
  • [47] Comparison of quasilinear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations
    Tao, X.
    Bortnik, J.
    Albert, J. M.
    Liu, K.
    Thorne, R. M.
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [48] Electron pitch angle diffusion by electrostatic electron cyclotron harmonic waves: The origin of pancake distributions
    Horne, RB
    Thorne, RM
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A3) : 5391 - 5402
  • [49] An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves
    Tripathi, Arvind K.
    Singhal, Rajendra P.
    ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (01)
  • [50] Electron pitch-angle diffusion: resonant scattering by waves vs. nonadiabatic effects
    Artemyev, A. V.
    Orlova, K. G.
    Mourenas, D.
    Agapitov, O. V.
    Krasnoselskikh, V. V.
    ANNALES GEOPHYSICAE, 2013, 31 (09) : 1485 - 1490