PCA-guided search for K-means

被引:41
|
作者
Xu, Qin [1 ]
Ding, Chris [2 ]
Liu, Jinpei [3 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
[2] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
[3] Anhui Univ, Sch Business, Hefei 730601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
K-means; Principal component analysis; Cluster centroid initialization; Clustering; ALGORITHM;
D O I
10.1016/j.patrec.2014.11.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to the non-convexity of the model formulations, expectation-maximization (EM) type algorithms converge to different local optima with different initializations. Recent discoveries have identified that the global solution of K-means cluster centroids lies in the principal component analysis (PCA) subspace. Based on this insight, we propose PCA-guided effective search for K-means. Because the PCA subspace is much smaller than the original space, searching in the PCA subspace is both more effective and efficient. Extensive experiments on four real world data sets and systematic comparison with previous algorithms demonstrate that our proposed method outperforms the rest as it makes the K-means more effective. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 55
页数:6
相关论文
共 50 条
  • [21] A local search approximation algorithm for k-means clustering
    Kanungo, T
    Mount, DM
    Netanyahu, NS
    Piatko, CD
    Silverman, R
    Wu, AY
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 28 (2-3): : 89 - 112
  • [22] Sparse kernel PCA by Kernel K-means and preimage reconstruction algorithms
    Marukatat, Sanparith
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 454 - 463
  • [23] An Epileptic Signal Preictal Ictal Using PCA, K-MEANS and K Nearest Neighbors
    Noertjahjani, Siswandari
    Susanto, Adhi
    Hidayat, Risanuri
    Wibowo, Samekto
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER, AND ELECTRICAL ENGINEERING (ICITACEE), 2015, : 202 - 206
  • [24] K-means - a fast and efficient K-means algorithms
    Nguyen C.D.
    Duong T.H.
    Nguyen, Cuong Duc (nguyenduccuong@tdt.edu.vn), 2018, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (11) : 27 - 45
  • [25] A guided ranking-based clustering using K-Means
    Suhailan, S.
    Samad, S. Abdul
    Burhanuddin, M. A.
    Mokhairi, M.
    PROCEEDINGS OF MECHANICAL ENGINEERING RESEARCH DAY 2017 (MERD), 2017, : 255 - 256
  • [26] Exact Acceleration of K-Means plus plus and K-Means∥
    Raff, Edward
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2928 - 2935
  • [27] Horizontal SCA Attacks against kP Algorithm Using K-Means and PCA
    Aftowicz, Marcin
    Kabin, Ievgen
    Klann, Dan
    Varabei, Yauhen
    Dyka, Zoya
    Langendoerfer, Peter
    2020 9TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2020, : 109 - 115
  • [28] Using PCA and K-Means to Predict Likeable Songs from Playlist Information
    Langensiepen, Caroline
    Cripps, Adam
    Cant, Richard
    2018 UKSIM-AMSS 20TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2018, : 26 - 31
  • [29] Research of Printed Matter Flaws Inspection based on improved K-Means and PCA
    Wu, Zhiqiang
    Ju, Hui
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 236 - 240
  • [30] Contribution of PCA/K-means methods to the mixed assessment of patient safety culture
    Fourar, Youcef Oussama
    Djebabra, Mebarek
    Benhassine, Wissal
    Boubaker, Leila
    INTERNATIONAL JOURNAL OF HEALTH GOVERNANCE, 2021, 26 (02) : 150 - 164