CheXImageNet: a novel architecture for accurate classification of Covid-19 with chest x-ray digital images using deep convolutional neural networks

被引:19
|
作者
Shastri, Sourabh [1 ]
Kansal, Isha [2 ]
Kumar, Sachin [1 ]
Singh, Kuljeet [1 ]
Popli, Renu [2 ]
Mansotra, Vibhakar [1 ]
机构
[1] Univ Jammu, Dept Comp Sci & IT, Srinagar 180006, Jammu & Kashmir, India
[2] Chitkara Univ, Inst Engn & Technol, Chitkara, Punjab, India
关键词
Coronavirus; Covid-19; Digital Images X-ray; Deep Neural Network; Image Classification;
D O I
10.1007/s12553-021-00630-x
中图分类号
R-058 [];
学科分类号
摘要
Many countries around the world have been influenced by Covid-19 which is a serious virus as it gets transmitted by human communication. Although, its syndrome is quite similar to the ordinary flu. The critical step involved in Covid-19 is the initial screening or testing of the infected patients. As there are no special detection tools, the demand for such diagnostic tools has been increasing continuously. So, it is eminently admissible to find out positive cases of this disease at the earliest so that the spreading of this dangerous virus can be controlled. Although, some methods for the detection of Covid-19 patients are available, which are performed upon respiratory based samples and among them, a critical approach for treatment is radiologic imaging or X-ray imaging. The latest conclusions obtained from X-ray digital imaging based algorithms and techniques recommend that such type of digital images may consist of significant facts regarding the SARS-CoV-2 virus. The utilization of Deep Neural Networks based methodologies clubbed with digital radiological imaging has been proved useful for accurately identifying this disease. This could also be adjuvant in conquering the problem of dearth of competent physicians in far-flung areas. In this paper, a CheXImageNet model has been introduced for detecting Covid-19 disease by using digital images of Chest X-ray with the help of an openly accessible dataset. Experiments for both binary class and multi-class have been performed in this work for benchmarking the effectiveness of the proposed work. An accuracy of 100% is reported for both binary classification (having cases of Covid-19 and Normal X-Ray) and classification for three classes (including cases of Covid-19, Normal X-Ray and, cases of Pneumonia disease) respectively.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 50 条
  • [21] Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in Chest X-ray Images
    Khishe, Mohammad
    Caraffini, Fabio
    Kuhn, Stefan
    MATHEMATICS, 2021, 9 (09)
  • [22] COVID-19 Chest X-ray Classification and Severity Assessment Using Convolutional and Transformer Neural Networks
    Tuan Le Dinh
    Lee, Suk-Hwan
    Kwon, Seong-Geun
    Kwon, Ki-Ryong
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [23] COVID-19 detection in X-ray images using convolutional neural networks
    Arias-Garzon, Daniel
    Alzate-Grisales, Jesus Alejandro
    Orozco-Arias, Simon
    Arteaga-Arteaga, Harold Brayan
    Bravo-Ortiz, Mario Alejandro
    Mora-Rubio, Alejandro
    Saborit-Torres, Jose Manuel
    Serrano, Joaquim aengel Montell
    Vaya, Maria de la Iglesia
    Cardona-Morales, Oscar
    Tabares-Soto, Reinel
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [24] A Simplified Convolutional Neural Network Design for COVID-19 Classification on Chest X-ray Images
    Sae-Lim, Wannipa
    Suwannanon, Ruedeekorn
    Aiyarak, Pattara
    2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,
  • [25] Deep Convolutional Neural Networks for COVID-19 Detection from Chest X-Ray Images Using ResNetV2
    Rakhymzhan, Tomiris
    Zarrin, Javad
    Maktab-Dar-Oghaz, Mahdi
    Saheer, Lakshmi Babu
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 106 - 116
  • [26] Diagnosis of COVID-19 based on chest X-ray images using pre-trained deep convolutional neural networks
    Shrivastava, Vimal K.
    Pradhan, Monoj K.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2022, 16 (01): : 169 - 180
  • [27] COVID-19 classification in X-ray chest images using a new convolutional neural network: CNN-COVID
    de Sousa P.M.
    Carneiro P.C.
    Oliveira M.M.
    Pereira G.M.
    da Costa Junior C.A.
    de Moura L.V.
    Mattjie C.
    da Silva A.M.M.
    Patrocinio A.C.
    Research on Biomedical Engineering, 2022, 38 (1) : 87 - 97
  • [28] Automatic Detection of COVID-19 from Chest X-ray Images with Convolutional Neural Networks
    Haque, Khandaker Foysal
    Haque, Fatin Farhan
    Gandy, Lisa
    Abdelgawad, Ahmed
    2020 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRONICS & COMMUNICATIONS ENGINEERING (ICCECE, 2020, : 125 - 130
  • [29] Classification of Chest X-ray Images Using Deep Convolutional Neural Network
    Hao, Ting
    Lu, Tong
    Li, Xia
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 440 - 445
  • [30] Detection of COVID-19 in Chest X-ray images using Transfer Learning with Deep Convolutional Neural Network
    Vogado, Luis
    Vieira, Pablo
    Neto, Pedro Santos
    Lopes, Lucas
    Silva, Gleison
    Araujo, Flavio
    Veras, Rodrigo
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 629 - 636