Domain decomposition in the GPU-accelerated Shift Monte Carlo code q

被引:4
|
作者
Hamilton, Steven P. [1 ]
Evans, Thomas M. [1 ]
Royston, Katherine E. [1 ]
Biondo, Elliott D. [1 ]
机构
[1] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
关键词
Monte Carlo; Domain decomposition; GPU; NEUTRON-TRANSPORT; CAPABILITIES;
D O I
10.1016/j.anucene.2021.108687
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The GPU solver within the Shift continuous-energy Monte Carlo neutron transport code has been extended to provide domain decomposition in addition to domain replication to enable the solution of problems with memory requirements exceeding the capacity of a single GPU. The strategy follows the Multiple Set, Overlapping Domain (MSOD) approach that is used in Shift's CPU solver and integrates into the event-based algorithm used for Shift's GPU solver. Furthermore, the ability to assign processors to spatial domains non-uniformly has been maintained. Two different approaches for communicating particle data between domains are considered, and multiple criteria for load balancing problems have been investigated. Numerical results are presented for both fresh and depleted small modular nuclear reactor (SMR) cores. A parallel efficiency of approximately 80% was achieved with up to 16 spatial domains measured relative to full domain replication. A scaling study on the Summit supercomputer demonstrates a weak scaling parallel efficiency of over 90% on over 24000 GPUs. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] GPU-accelerated inverse identification of radiative properties of particle suspensions in liquid by the Monte Carlo method
    Ma, C. Y.
    Zhao, J. M.
    Liu, L. H.
    Zhang, L.
    Li, X. C.
    Jiang, B. C.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 172 : 146 - 159
  • [42] A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system
    Ma, Jiasen
    Beltran, Chris
    Tseung, Hok Seum Wan Chan
    Herman, Michael G.
    MEDICAL PHYSICS, 2014, 41 (12)
  • [43] Modeling and Analysis of Cardiac Hybrid Cellular Automata via GPU-Accelerated Monte Carlo Simulation
    Treml, Lilly Maria
    Bartocci, Ezio
    Gizzi, Alessio
    MATHEMATICS, 2021, 9 (02) : 1 - 24
  • [44] Scatter Correction Based on GPU-Accelerated Full Monte Carlo Simulation for Brain PET/MRI
    Ma, Bo
    Gaens, Michaela
    Caldeira, Liliana
    Bert, Julian
    Lohmann, Philipp
    Tellmann, Lutz
    Lerche, Christoph
    Scheins, Jurgen
    Kops, Elena Rota
    Xu, Hancong
    Lenz, Mirjam
    Pietrzyk, Uwe
    Shah, Nadim Jon
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (01) : 140 - 151
  • [45] GPU-accelerated Monte Carlo-based online adaptive proton therapy: A feasibility study
    Feng, Hongying
    Patel, Samir H.
    Wong, William W.
    Younkin, James E.
    Penoncello, Gregory P.
    Morales, Danairis Hernandez
    Stoker, Joshua B.
    Robertson, Daniel G.
    Fatyga, Mirek
    Bues, Martin
    Schild, Steven E.
    Foote, Robert L.
    Liu, Wei
    MEDICAL PHYSICS, 2022, 49 (06) : 3550 - 3563
  • [46] Commissioning of GPU–Accelerated Monte Carlo Code FRED for Clinical Applications in Proton Therapy
    Gajewski, Jan
    Garbacz, Magdalena
    Chang, Chih-Wei
    Czerska, Katarzyna
    Durante, Marco
    Krah, Nils
    Krzempek, Katarzyna
    Kopeć, Renata
    Lin, Liyong
    Mojżeszek, Natalia
    Patera, Vincenzo
    Pawlik-Niedzwiecka, Monika
    Rinaldi, Ilaria
    Rydygier, Marzena
    Pluta, Elzbieta
    Scifoni, Emanuele
    Skrzypek, Agata
    Tommasino, Francesco
    Schiavi, Angelo
    Rucinski, Antoni
    Frontiers in Physics, 2021, 8
  • [47] GPU-Accelerated Monte Carlo Study of the Application of the Novel Superficial X-Ray Radiotherapy Filters
    Zhang, H.
    Tao, L.
    Chang, Y.
    Pei, X.
    Xu, X. G.
    MEDICAL PHYSICS, 2024, 51 (10) : 7961 - 7961
  • [48] GPU-accelerated Monte Carlo TPS for treatment plan verification at CCB Krakow proton therapy centre
    Rucinski, A.
    Battistoni, G.
    Durante, M.
    Gajewski, J.
    Garbacz, M.
    Krah, N.
    Olko, P.
    Patera, V.
    Rinaldi, I.
    Skrzypek, A.
    Tommasino, F.
    Scifoni, E.
    Schiavi, A.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S997 - S997
  • [49] FullMonteCUDA: a fast, flexible, and accurate GPU-accelerated Monte Carlo simulator for light propagation in turbid media
    Young-Schultz, Tanner
    Brown, Stephen
    Lilge, Lothar
    Betz, Vaughn
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (09) : 4711 - 4726
  • [50] Radiance based method for accurate determination of volume scattering parameters using GPU-accelerated Monte Carlo
    Correia, Antonio
    Hanselaer, Peter
    Cornelissen, Hugo
    Meuret, Youri
    OPTICS EXPRESS, 2017, 25 (19): : 22575 - 22586