Magnetization State in Magnetic Nanoparticle Agglomerates

被引:0
|
作者
Bregar, Vladimir B. [1 ]
Pavlin, Mojca [1 ]
Znidarsic, Andrej [1 ]
机构
[1] Nanotesla Inst, Kolektor Grp, Ljubljana 1521, Slovenia
关键词
magnetization; agglomerates; superparamagnetic; nanoparticles; BROWNIAN RELAXATION; SIZE DISTRIBUTION; SUSCEPTIBILITY; FLUIDS;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We examined magnetization states of agglomerates for two types of nanoparticle agglomerate systems, where primary crystallites have either blocked magnetization or are superparamagnetic at room temperature. We determined the magnetization state of the agglomerates with measuring magnetic permeability as a function of frequency and measuring magnetization as a function of temperature for zero-field cooled and field-cooled samples. Then we examined specifically the magnetization state of agglomerates made from blocked crystallites and we used magnetic flux measurements at different magnetic conditions. Our results show that in the case of superparamagnetic behavior of individual crystallites also the agglomerate can retain superparamagnetic behavior, whereas for crystallites with blocked magnetization nonuniform magnetization state of the agglomerate is possible.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [21] Light scattering from nanoparticle agglomerates
    Kelesidis, Georgios A.
    Kholghy, Mohammad Reza
    Zuercher, Joel
    Robertz, Julian
    Allemann, Martin
    Duric, Aleksandar
    Pratsinis, Sotiris E.
    POWDER TECHNOLOGY, 2020, 365 : 52 - 59
  • [22] Fragmentation of nanoparticle agglomerates in gas phase
    Oshio, Nao
    Oda, Keiichi
    Yabuhana, Masaki
    Okada, Yoshiki
    29TH SYMPOSIUM ON AEROSOL SCIENCE AND TECHNOLOGY, 2012, 2012, : 31 - 32
  • [23] Interparticle forces in silica nanoparticle agglomerates
    M. Seipenbusch
    S. Rothenbacher
    M. Kirchhoff
    H.-J. Schmid
    G. Kasper
    A. P. Weber
    Journal of Nanoparticle Research, 2010, 12 : 2037 - 2044
  • [24] Rebound behavior of nanoparticle-agglomerates
    Gensch, M.
    Weber, A. P.
    ADVANCED POWDER TECHNOLOGY, 2017, 28 (08) : 1930 - 1942
  • [25] Impact fragmentation of metal nanoparticle agglomerates
    Seipenbusch, Martin
    Toneva, Petya
    Peukert, Wolfgang
    Weber, Alfred P.
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2007, 24 (03) : 193 - 200
  • [26] XRD, TEM and magnetic resonance studies of iron carbide nanoparticle agglomerates in a carbon matrix
    Narkiewcz, U
    Guskos, N
    Arabezyk, W
    Typek, J
    Bodziony, T
    Konicki, W
    Gasiorek, G
    Kucharewcz, I
    Anagnostakis, EA
    CARBON, 2004, 42 (5-6) : 1127 - 1132
  • [27] Sound assisted fluidization of nanoparticle agglomerates
    Zhu, C
    Liu, GL
    Yu, Q
    Pfeffer, R
    Dave, RN
    Nam, CH
    POWDER TECHNOLOGY, 2004, 141 (1-2) : 119 - 123
  • [28] Characterization of the Stratified Morphology of Nanoparticle Agglomerates
    Fabre, Andrea
    Steur, Teun
    Bouwman, Wim G.
    Kreutzer, Michiel T.
    van Ommen, J. Ruud
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (36): : 20446 - 20453
  • [29] Fluidization of Nanoparticle Agglomerates at Elevated Temperatures
    Esmailpour, Ali Asghar
    Mostoufi, Navid
    Zarghami, Reza
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (46) : 13955 - 13969
  • [30] Gas fluidization characteristics of nanoparticle agglomerates
    Zhu, C
    Yu, Q
    Dave, RN
    Pfeffer, R
    AICHE JOURNAL, 2005, 51 (02) : 426 - 439