Adaptive generalized multiscale finite element methods for H(curl)-elliptic problems with heterogeneous coefficients

被引:8
|
作者
Chung, Eric T. [1 ]
Li, Yanbo [2 ]
机构
[1] CUHK, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Multiscale finite element method; Ada ptivity; H(curl)-elliptic problem; ELLIPTIC PROBLEMS; WAVE-PROPAGATION; POROUS-MEDIA; GMSFEM; PERMEABILITY; SIMULATION; EQUATIONS; FLOWS;
D O I
10.1016/j.cam.2018.06.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct an adaptive multiscale method for solving H(curl)-elliptic problems in highly heterogeneous media. Our method is based on the generalized multiscale finite element method. We will first construct a suitable snapshot space, and a dimensional reduction procedure to identify important modes of the solution. We next develop and analyze an a posteriori error indicator, and the corresponding adaptive algorithm. In addition, we will construct a coupled offline-online adaptive algorithm, which provides an adaptive strategy to the selection of offline and online basis functions. Our theory shows that the convergence is robust with respect to the heterogeneities and contrast of the media. We present several numerical results to illustrate the performance of our method. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:357 / 373
页数:17
相关论文
共 50 条
  • [31] DISCONTINUOUS GALERKIN FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR ELLIPTIC PROBLEMS WITH MULTIPLE SCALES
    Abdulle, Assyr
    MATHEMATICS OF COMPUTATION, 2012, 81 (278) : 687 - 713
  • [32] Cluster-based generalized multiscale finite element method for elliptic PDEs with random coefficients
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Zhang, Zhiwen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 371 : 606 - 617
  • [33] A framework for adaptive multiscale methods for elliptic problems
    Nolen, James
    Papanicolaou, George
    Pironneau, Olivier
    MULTISCALE MODELING & SIMULATION, 2008, 7 (01): : 171 - 196
  • [34] Adaptive finite element methods for elliptic equations with non-smooth coefficients
    Bernardi, C
    Verfürth, R
    NUMERISCHE MATHEMATIK, 2000, 85 (04) : 579 - 608
  • [35] Adaptive finite element methods for elliptic equations with non-smooth coefficients
    C. Bernardi
    R. Verfürth
    Numerische Mathematik, 2000, 85 : 579 - 608
  • [36] ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS: ABSTRACT FRAMEWORK AND APPLICATIONS
    Nicaise, Serge
    Cochez-Dhondt, Sarah
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (03): : 485 - 508
  • [37] Nonconforming generalized multiscale finite element methods
    Lee, Chak Shing
    Sheen, Dongwoo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 215 - 229
  • [38] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [39] Generalized multiscale finite element methods (GMsFEM)
    Efendiev, Yalchin
    Galvis, Juan
    Hou, Thomas Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 116 - 135
  • [40] Adaptive Hybridized Interior Penalty Discontinuous Galerkin Methods for H(curl)-Elliptic Problems
    Carstensen, C.
    Hoppe, R. H. W.
    Sharma, N.
    Warburton, T.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (01): : 13 - 37