Adaptive generalized multiscale finite element methods for H(curl)-elliptic problems with heterogeneous coefficients

被引:8
|
作者
Chung, Eric T. [1 ]
Li, Yanbo [2 ]
机构
[1] CUHK, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Multiscale finite element method; Ada ptivity; H(curl)-elliptic problem; ELLIPTIC PROBLEMS; WAVE-PROPAGATION; POROUS-MEDIA; GMSFEM; PERMEABILITY; SIMULATION; EQUATIONS; FLOWS;
D O I
10.1016/j.cam.2018.06.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct an adaptive multiscale method for solving H(curl)-elliptic problems in highly heterogeneous media. Our method is based on the generalized multiscale finite element method. We will first construct a suitable snapshot space, and a dimensional reduction procedure to identify important modes of the solution. We next develop and analyze an a posteriori error indicator, and the corresponding adaptive algorithm. In addition, we will construct a coupled offline-online adaptive algorithm, which provides an adaptive strategy to the selection of offline and online basis functions. Our theory shows that the convergence is robust with respect to the heterogeneities and contrast of the media. We present several numerical results to illustrate the performance of our method. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:357 / 373
页数:17
相关论文
共 50 条
  • [1] Convergence of adaptive edge finite element methods for H(curl)-elliptic problems
    Zhong, Liuqiang
    Shu, Shi
    Chen, Long
    Xu, Jinchao
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (2-3) : 415 - 432
  • [2] ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS
    Bonito, Andrea
    Devore, Ronald A.
    Nochetto, Ricardo H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3106 - 3134
  • [3] Generalized multiscale finite element methods for problems in perforated heterogeneous domains
    Chung, Eric T.
    Efendiev, Yalchin
    Li, Guanglian
    Vasilyeva, Maria
    APPLICABLE ANALYSIS, 2016, 95 (10) : 2254 - 2279
  • [4] Edge multiscale methods for elliptic problems with heterogeneous coefficients
    Fu, Shubin
    Chung, Eric
    Li, Guanglian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 228 - 242
  • [5] On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients
    Chen, ZM
    Dai, SB
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02): : 443 - 462
  • [6] Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems
    Ralf Hiptmair
    Jingzhi Li
    Jun Zou
    Numerische Mathematik, 2012, 122 : 557 - 578
  • [7] Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems
    Hiptmair, Ralf
    Li, Jingzhi
    Zou, Jun
    NUMERISCHE MATHEMATIK, 2012, 122 (03) : 557 - 578
  • [8] Weak Galerkin finite element methods for H(curl; O) and H(curl, div; O)-elliptic problems
    Kumar, Raman
    Deka, Bhupen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 147 : 210 - 221
  • [9] On finite element methods for heterogeneous elliptic problems
    LNCC - Laboratório Nacional de Computação Científica, Av. Getúlio Vargas 333, Petrópolis, CEP 25651-075 RJ, Brazil
    Int. J. Solids Struct., 25-26 (6436-6450):
  • [10] On finite element methods for heterogeneous elliptic problems
    Loula, A. F. D.
    Correa, M. R.
    Guerreiro, J. N. C.
    Toledo, E. M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (25-26) : 6436 - 6450