Stochastic modeling of animal epidemics using data collected over three different spatial scales

被引:9
|
作者
Rorres, Chris [1 ]
Pelletier, Sky T. K. [1 ]
Smith, Gary [1 ]
机构
[1] Univ Penn, Sch Vet Med, Sect Epidemiol & Publ Hlth, Kennett Sq, PA 19348 USA
关键词
Estimators; Avian influenza; Parameter estimation; Mathematical models; ZIP-codes; VACCINATION STRATEGIES; FOOT; DISTRIBUTIONS; DISEASE; UK;
D O I
10.1016/j.epidem.2011.02.003
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
A stochastic, spatial, discrete-time, SEIR model of avian influenza epidemics among poultry farms in Pennsylvania is formulated. Using three different spatial scales wherein all the birds within a single farm, ZIP code, or county are clustered into a single point, we obtain three different views of the epidemics. For each spatial scale, two parameters within the viral-transmission kernel of the model are estimated using simulated epidemic data. We show that simulated epidemics modeled using data collected on the farm and ZIP-code levels behave similar to the actual underlying epidemics, but this is not true using data collected on the county level. Such analyses of data collected on different spatial scales are useful in formulating intervention strategies to control an ongoing epidemic (e. g., vaccination schedules and culling policies). (C) 2011 Elsevier B. V. All rights reserved.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [31] Estimating the kernel parameters of premises-based stochastic models of farmed animal infectious disease epidemics using limited, incomplete, or ongoing data
    Rorres, Chris
    Pelletier, Sky T. K.
    Keeling, Matt J.
    Smith, Gary
    THEORETICAL POPULATION BIOLOGY, 2010, 78 (01) : 46 - 53
  • [32] Stochastic reconstruction of spatial data using LLE and MPS
    Zhang, Ting
    Du, Yi
    Li, Bo
    Zhang, Anqin
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (01) : 243 - 256
  • [33] Optimal reservoir operations for irrigation using a three spatial scales approach
    Mannocchi, F
    Todisco, F
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2006, 132 (02) : 130 - 142
  • [34] The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels
    Dai, Zhaoxin
    Hu, Yunfeng
    Zhao, Guanhua
    SUSTAINABILITY, 2017, 9 (02)
  • [35] Editorial: Quantitative modeling of psychopathology using passively collected data
    Jacobson, Nicholas C.
    Funk, Burkhardt
    Abdullah, Saeed
    FRONTIERS IN PSYCHOLOGY, 2023, 13
  • [36] Constraint-Based Spatial Data Management for Cartographic Representation at Different Scales
    Blana, Natalia
    Tsoulos, Lysandros
    GEOGRAPHIES, 2022, 2 (02): : 258 - 273
  • [37] Using Stochastic Modeling to Predict the Effect of Culling and Colony Dispersal of Bats on Zoonotic Viral Epidemics
    Jeong, Jaewoon
    McCallum, Hamish
    VECTOR-BORNE AND ZOONOTIC DISEASES, 2021, 21 (05) : 369 - 377
  • [38] Predicted effects of climate factors on mountain species are not uniform over different spatial scales
    Brambilla, Mattia
    Gustin, Marco
    Cento, Michele
    Ilahiane, Luca
    Celada, Claudio
    JOURNAL OF AVIAN BIOLOGY, 2019, 50 (09)
  • [39] A biomechanical breast modelevaluated with respect to MRI data collected in three different positions
    Mira, Anna
    Carton, Ann-Katherine
    Muller, Serge
    Payan, Yohan
    CLINICAL BIOMECHANICS, 2018, 60 : 191 - 199
  • [40] Comparison of Canine Stifle Kinematic Data Collected with Three Different Targeting Models
    Torres, Bryan T.
    Punke, John P.
    Fu, Yang-Chieh
    Navik, Judith A.
    Speas, Abbie L.
    Sornborger, Andrew
    Budsberg, Steven C.
    VETERINARY SURGERY, 2010, 39 (04) : 504 - 512