Stochastic modeling of animal epidemics using data collected over three different spatial scales

被引:9
|
作者
Rorres, Chris [1 ]
Pelletier, Sky T. K. [1 ]
Smith, Gary [1 ]
机构
[1] Univ Penn, Sch Vet Med, Sect Epidemiol & Publ Hlth, Kennett Sq, PA 19348 USA
关键词
Estimators; Avian influenza; Parameter estimation; Mathematical models; ZIP-codes; VACCINATION STRATEGIES; FOOT; DISTRIBUTIONS; DISEASE; UK;
D O I
10.1016/j.epidem.2011.02.003
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
A stochastic, spatial, discrete-time, SEIR model of avian influenza epidemics among poultry farms in Pennsylvania is formulated. Using three different spatial scales wherein all the birds within a single farm, ZIP code, or county are clustered into a single point, we obtain three different views of the epidemics. For each spatial scale, two parameters within the viral-transmission kernel of the model are estimated using simulated epidemic data. We show that simulated epidemics modeled using data collected on the farm and ZIP-code levels behave similar to the actual underlying epidemics, but this is not true using data collected on the county level. Such analyses of data collected on different spatial scales are useful in formulating intervention strategies to control an ongoing epidemic (e. g., vaccination schedules and culling policies). (C) 2011 Elsevier B. V. All rights reserved.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [1] Modeling the effects of epidemics on routinely collected data
    Zeng, XM
    Wagner, M
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2002, 9 (06) : S17 - S22
  • [2] Modeling the effects of epidemics on routinely collected data
    Zeng, XM
    Wagner, M
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2001, : 781 - 785
  • [3] The spatial diffusion of norovirus epidemics over three seasons in Tokyo
    Inaida, S.
    Shobugawa, Y.
    Matsuno, S.
    Saito, R.
    Suzuki, H.
    EPIDEMIOLOGY AND INFECTION, 2015, 143 (03): : 522 - 528
  • [4] A Spatial-Temporal Method to Detect Global Influenza Epidemics Using Heterogeneous Data Collected from the Internet
    Zhou, Xichuan
    Yang, Fan
    Feng, Yujie
    Li, Qin
    Tang, Fang
    Hu, Shengdong
    Lin, Zhi
    Zhang, Lei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (03) : 802 - 812
  • [5] Conservation planning with insects at three different spatial scales
    Cabeza, Mar
    Arponen, Anni
    Jaattela, Laura
    Kujala, Heini
    van Teeffelen, Astrid
    Hanski, Ilkka
    ECOGRAPHY, 2010, 33 (01) : 54 - 63
  • [6] Wave analysis based on genetic algorithms using data collected from laboratories at different scales
    Nunez, Jonathan
    Cruchaga, Marcela
    Tampier, Gonzalo
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2022, 95 : 231 - 239
  • [7] Modelling the spatial distribution of evapotranspiration on different scales using remote sensing data
    Mauser, Wolfram
    Schädlich, Stephan
    Journal of Hydrology, 1998, 212-213 (1-4): : 250 - 267
  • [8] Modelling the spatial distribution of evapotranspiration on different scales using remote sensing data
    Mauser, W
    Schädlich, S
    JOURNAL OF HYDROLOGY, 1998, 212 (1-4) : 250 - 267
  • [9] Modeling instantaneous network correlations over multiple spatial scales
    Santos, Gustavo S.
    Dharmaraj, Elakkat G.
    Plenz, Dietmar
    Nakahara, Hiroyuki
    NEUROSCIENCE RESEARCH, 2009, 65 : S133 - S133
  • [10] Modeling spatial-temporal epidemics using STBL model
    Billard, Lynne
    Kim, Duck-Ki
    Lee, Chan-Hee
    Lee, Sung Duck
    Lee, Keon-Myung
    Kim, Sung-Soo
    ICMLA 2007: SIXTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2007, : 629 - +