Solution-Processed, Silver-Doped NiOx as Hole Transporting Layer for High-Efficiency Inverted Perovskite Solar Cells

被引:102
|
作者
Zheng, Jianghui [1 ,2 ]
Hu, Long [1 ]
Yun, Jae S. [1 ]
Zhang, Meng [1 ]
Lau, Cho Fai Jonathan [1 ]
Bing, Jueming [1 ]
Deng, Xiaofan [1 ]
Ma, Qingshan [1 ]
Cho, Yongyoon [1 ]
Fu, Weifei [3 ]
Chen, Chao [2 ]
Green, Martin A. [1 ]
Huang, Shujuan [1 ]
Ho-Baillie, Anita W. Y. [1 ]
机构
[1] Univ New South Wales, Australian Ctr Adv Photovolta, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
[2] Xiamen Univ, Coll Energy, Xiamen 361005, Peoples R China
[3] Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 02期
关键词
hole transport layer; NiOx; Ag-doped NiOx; perovskite solar cells; inverted structure; IMPROVED AIR STABILITY; HIGH-PERFORMANCE; INTERFACIAL LAYER; SEQUENTIAL DEPOSITION; TEMPERATURE; EXTRACTION; FILM; FORMAMIDINIUM; HYSTERESIS; CH3NH3PBI3;
D O I
10.1021/acsaem.7b00129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NiOx is as a promising hole transporting layer (HTL) for perovskite solar cells (PSCs) due to its good stability, large bandgap, and deep valence band. The use of NiOx as a HTL for "inverted" PSC as part of a monolithic silicon/perovskite tandem solar cell is also suitable when the processing temperature is suitably low. Solution-processed NiOx at low temperature for PSCs remains to be improved due to the relatively low short-circuit current density (J(sc)) and fill factor (FF) of reported devices. In this work, the use of Ag-doping is reported for solution-processed NiOx film at 300 degrees C for inverted planar PSCs. We have shown that Ag-doping has no negative effect on the optical transmittance and morphology of the NiOx film and the overlying perovskite film. In addition, Ag-doping is effective in improving conductivity, improving carrier extraction, and enhancing the p-type property of the NiOx film confirmed by electrical characterization, photoluminescence measurements, and ultraviolet photoelectron spectroscopy. These improvements result in better devices based on the ITO/Ag:NiOx/CH3NH3PbI3/PCBM/BCP/Ag structure with improved average FF (from 69% to 75%), enhanced average J(SC) (by 1.2 mA/cm(2) absolute) and enhanced average V-OC (by 29 mV absolute). The average efficiency of these devices is 16.3% while the best device achieves a PCE of 17.3% with negligible hysteresis and a stabilized efficiency of 17.1%. In comparison, devices that use undoped NiOx have an average efficiency of 13.5%. This work demonstrates that silver is a promising doping material for NiOx by a simple solution process for high-performance inverted PSCs and perovskite tandems.
引用
收藏
页码:561 / 570
页数:19
相关论文
共 50 条
  • [41] High-performance and stable inverted perovskite solar cells using low-temperature solution-processed CuNbOx hole transport layer
    Ye, Xiaoqin
    Wen, Zhiyue
    Zhang, Rui
    Ling, Hanbing
    Xia, Jiangbin
    Lu, Xing
    JOURNAL OF POWER SOURCES, 2021, 483
  • [42] Solution-processed Kesterite Cu2ZnSnS4 as Efficient Hole Extraction Layer for Inverted Perovskite Solar Cells
    Li, Xin
    Zhao, Xingyue
    Gu, Youchen
    Yin, Xuewen
    Nan, Hui
    Tai, Meiqian
    Chen, Hui
    Shen, Heping
    Lin, Hong
    CHEMISTRY LETTERS, 2018, 47 (06) : 817 - 820
  • [43] Solution-processed and thickness-insensitive hole transport layer for high efficiency organic solar cells
    Yi, Xueting
    Liu, He
    Li, Youzhan
    Liu, Zekun
    Wu, Jiang
    Tang, Hao
    Fu, Yingying
    Xie, Zhiyuan
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (46) : 17521 - 17529
  • [44] as electron transport layer for high performance solution-processed perovskite solar cells
    Wang, Haibin
    Zhao, Chun
    Yin, Li
    Li, Xinjian
    Tu, Xin
    Lim, Eng Gee
    Liu, Yina
    Zhao, Ce Zhou
    APPLIED SURFACE SCIENCE, 2021, 563
  • [45] Rare earth ions doped NiOx hole transport layer for efficient and stable inverted perovskite solar cells
    Chen, Xinfu
    Xu, Lin
    Chen, Cong
    Wu, Yanjie
    Bi, Wenbo
    Song, Zonglong
    Zhuang, Xinmeng
    Yang, Shuo
    Zhu, Shidong
    Song, Hongwei
    JOURNAL OF POWER SOURCES, 2019, 444
  • [46] Solution-Processed Metal Ion Polyelectrolytes as Hole Transport Materials for Efficient Inverted Perovskite Solar Cells
    Shoukat, Faiza
    Kang, Ju Hwan
    Khan, Yeasin
    Park, Yu Jung
    Lee, Jin Hee
    Walker, Bright
    Seo, Jung Hwa
    ADVANCED MATERIALS INTERFACES, 2023, 10 (17)
  • [47] High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer
    Kim, Jong H.
    Liang, Po-Wei
    Williams, Spencer T.
    Cho, Namchul
    Chueh, Chu-Chen
    Glaz, Micah S.
    Ginger, David S.
    Jen, Alex K. -Y.
    ADVANCED MATERIALS, 2015, 27 (04) : 695 - 701
  • [48] Surface modified NiOx as an efficient hole transport layer in inverted perovskite solar cells
    Yan Yang
    Jieda Chen
    Chengyuan Li
    Wei Zhang
    Shan-Ting Zhang
    Dongdong Li
    Jiafan Zhang
    Yi’an Ding
    Linfeng Lu
    Ye Song
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 18522 - 18532
  • [49] Surface modified NiOx as an efficient hole transport layer in inverted perovskite solar cells
    Yang, Yan
    Chen, Jieda
    Li, Chengyuan
    Zhang, Wei
    Zhang, Shan-Ting
    Li, Dongdong
    Zhang, Jiafan
    Ding, Yi'an
    Lu, Linfeng
    Song, Ye
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (23) : 18522 - 18532
  • [50] Solution-processed room temperature nickel oxide hole transport layer for perovskite solar cells
    Hadipour, Afshin
    KUWAIT JOURNAL OF SCIENCE, 2025, 52 (02)