Solution-Processed, Silver-Doped NiOx as Hole Transporting Layer for High-Efficiency Inverted Perovskite Solar Cells

被引:102
|
作者
Zheng, Jianghui [1 ,2 ]
Hu, Long [1 ]
Yun, Jae S. [1 ]
Zhang, Meng [1 ]
Lau, Cho Fai Jonathan [1 ]
Bing, Jueming [1 ]
Deng, Xiaofan [1 ]
Ma, Qingshan [1 ]
Cho, Yongyoon [1 ]
Fu, Weifei [3 ]
Chen, Chao [2 ]
Green, Martin A. [1 ]
Huang, Shujuan [1 ]
Ho-Baillie, Anita W. Y. [1 ]
机构
[1] Univ New South Wales, Australian Ctr Adv Photovolta, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
[2] Xiamen Univ, Coll Energy, Xiamen 361005, Peoples R China
[3] Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 02期
关键词
hole transport layer; NiOx; Ag-doped NiOx; perovskite solar cells; inverted structure; IMPROVED AIR STABILITY; HIGH-PERFORMANCE; INTERFACIAL LAYER; SEQUENTIAL DEPOSITION; TEMPERATURE; EXTRACTION; FILM; FORMAMIDINIUM; HYSTERESIS; CH3NH3PBI3;
D O I
10.1021/acsaem.7b00129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NiOx is as a promising hole transporting layer (HTL) for perovskite solar cells (PSCs) due to its good stability, large bandgap, and deep valence band. The use of NiOx as a HTL for "inverted" PSC as part of a monolithic silicon/perovskite tandem solar cell is also suitable when the processing temperature is suitably low. Solution-processed NiOx at low temperature for PSCs remains to be improved due to the relatively low short-circuit current density (J(sc)) and fill factor (FF) of reported devices. In this work, the use of Ag-doping is reported for solution-processed NiOx film at 300 degrees C for inverted planar PSCs. We have shown that Ag-doping has no negative effect on the optical transmittance and morphology of the NiOx film and the overlying perovskite film. In addition, Ag-doping is effective in improving conductivity, improving carrier extraction, and enhancing the p-type property of the NiOx film confirmed by electrical characterization, photoluminescence measurements, and ultraviolet photoelectron spectroscopy. These improvements result in better devices based on the ITO/Ag:NiOx/CH3NH3PbI3/PCBM/BCP/Ag structure with improved average FF (from 69% to 75%), enhanced average J(SC) (by 1.2 mA/cm(2) absolute) and enhanced average V-OC (by 29 mV absolute). The average efficiency of these devices is 16.3% while the best device achieves a PCE of 17.3% with negligible hysteresis and a stabilized efficiency of 17.1%. In comparison, devices that use undoped NiOx have an average efficiency of 13.5%. This work demonstrates that silver is a promising doping material for NiOx by a simple solution process for high-performance inverted PSCs and perovskite tandems.
引用
收藏
页码:561 / 570
页数:19
相关论文
共 50 条
  • [1] High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact
    Yin, Xuewen
    Yao, Zhibo
    Luo, Qiang
    Dai, Xuezeng
    Zhou, Yu
    Zhang, Ye
    Zhou, Yangying
    Luo, Songping
    Li, Jianbao
    Wang, Ning
    Lin, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) : 2439 - 2448
  • [2] On the role of solution-processed bathocuproine in high-efficiency inverted perovskite solar cells
    Chiang, Shou-En
    Chandel, Anjali
    Thakur, Diksha
    Chen, Yan-Ta
    Lin, Pei-Chen
    Wu, Jia-Ren
    Cai, Kun-Bin
    Kassou, Said
    Yeh, Jui-Ming
    Yuan, Chi-Tsu
    Shen, Ji-Lin
    Chang, Sheng Hsiung
    SOLAR ENERGY, 2021, 218 : 142 - 149
  • [3] Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells
    Zhang, Jiankai
    Mao, Wujian
    Hou, Xian
    Duan, Jiaji
    Zhou, Jianping
    Huang, Sumei
    Wei Ou-Yang
    Zhan, Xuehua
    Sun, Zhuo
    Chen, Xiaohong
    SOLAR ENERGY, 2018, 174 : 1133 - 1141
  • [4] High-Performance Inverted Perovskite Solar Cells with Sol-Gel-Processed Sliver-Doped NiOX Hole Transporting Layer
    Wang, Haibin
    Qin, Zhiyin
    Li, XinJian
    Zhao, Chun
    Liang, Chao
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (04)
  • [5] Room temperature solution-processed Fe doped NiOx as a novel hole transport layer for high efficient perovskite solar cells
    Chandrasekhar, P. S.
    Seo, You-Hyun
    Noh, Yong-Jin
    Na, Seok-In
    APPLIED SURFACE SCIENCE, 2019, 481 : 588 - 596
  • [6] Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells
    Ciro, John
    Ramirez, Daniel
    Mejia Escobar, Mario Alejandro
    Felipe Montoya, Juan
    Mesa, Santiago
    Betancur, Rafael
    Jaramillo, Franklin
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (14) : 12348 - 12354
  • [7] Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer
    Wei, Ying
    Yao, Kai
    Wang, Xiaofeng
    Jiang, Yihua
    Liu, Xueyuan
    Zhou, Naigen
    Li, Fan
    APPLIED SURFACE SCIENCE, 2018, 427 : 782 - 790
  • [8] High-performance inverted planar perovskite solar cells based on solution-processed rubidium-doped nickel oxide hole-transporting layer
    Fu, Qingxia
    Xiao, Shuqin
    Tang, Xianglan
    Hu, Ting
    ORGANIC ELECTRONICS, 2019, 69 : 34 - 41
  • [9] High-efficiency inverted polymer solar cells with solution-processed metal oxides
    Lin, Yu-Hong
    Yang, Po-Ching
    Huang, Jing-Shun
    Huang, Guo-Dong
    Wang, Ing-Jye
    Wu, Wen-Hao
    Lin, Ming-Yi
    Su, Wei-Fang
    Lin, Ching-Fuh
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (08) : 2511 - 2515
  • [10] Efficient planar heterojunction perovskite solar cells employing a solution-processed Zn-doped NiOX hole transport layer
    Lee, Ju Ho
    Noh, Young Wook
    Jin, In Su
    Jung, Jae Woong
    ELECTROCHIMICA ACTA, 2018, 284 : 253 - 259