Electronic band structure of (111) SrRuO3 thin films: An angle-resolved photoemission spectroscopy study

被引:3
|
作者
Ryu, Hanyoung [1 ,2 ]
Ishida, Yukiaki [1 ,3 ]
Kim, Bongju [1 ,2 ]
Kim, Jeong Rae [1 ,2 ]
Kim, Woo Jin [1 ,2 ]
Kohama, Yoshimitsu [3 ]
Imajo, Shusaku [3 ]
Yang, Zhuo [3 ]
Kyung, Wonshik [1 ,2 ]
Hahn, Sungsoo [1 ,2 ]
Sohn, Byungmin [1 ,2 ]
Song, Inkyung [1 ]
Kim, Minsoo [1 ,2 ]
Huh, Soonsang [1 ,2 ]
Jung, Jongkeun [1 ,2 ]
Kim, Donghan [1 ,2 ]
Noh, Tae Won [1 ,2 ]
Das, Saikat [1 ,2 ]
Kim, Changyoung [1 ,2 ]
机构
[1] Inst Basic Sci IBS, Ctr Correlated Electron Syst, Seoul 08826, South Korea
[2] Seoul Natl Univ SNU, Dept Phys & Astron, Seoul 08826, South Korea
[3] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
关键词
EXCITATIONS; GAS;
D O I
10.1103/PhysRevB.102.041102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We studied the electronic band structure of pulsed laser deposition (PLD) grown (111)-oriented SrRuO3 thin films using in situ angle-resolved photoemission spectroscopy technique. We observed light bands with a renormalized quasiparticle effective mass of about 0.8m(e). The electron-phonon coupling underlying this mass renormalization yields a characteristic "kink" in the band dispersion. The self-energy analysis using the Einstein model suggests five optical phonon modes covering an energy range of 44-90 meV contribute to the coupling. In addition, we show that the quasiparticle spectral intensity at the Fermi level is considerably suppressed, and two prominent peaks appear in the valance band spectrum at binding energies of 0.8 and 1.4 eV, respectively. We discuss the possible implications of these observations. Overall, our work demonstrates that high-quality thin films of oxides with large spin-orbit coupling can be grown along the polar (111) orientation by the PLD technique, enabling in situ electronic band structure study. This could allow for characterizing the thickness-dependent evolution of band structure of (111) heterostructures-a prerequisite for exploring possible topological quantum states in the bilayer limit.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] ANGLE-RESOLVED PHOTOEMISSION-STUDY OF THE ELECTRONIC BAND-STRUCTURE OF THE ZRC(100) SURFACE
    LINDBERG, PAP
    WINCOTT, PL
    JOHANSSON, LI
    CHRISTENSEN, AN
    PHYSICAL REVIEW B, 1987, 36 (09): : 4681 - 4691
  • [32] ANGLE-RESOLVED PHOTOEMISSION-STUDY OF AG(111)
    EDAMOTO, K
    MIYAZAKI, E
    SHIMOKOSHI, K
    KATO, H
    PHYSICA SCRIPTA, 1990, 41 (01): : 91 - 94
  • [34] ANGLE-RESOLVED PHOTOEMISSION AND BAND-STRUCTURE OF COPPER
    COURTHS, R
    CORD, B
    WERN, H
    HUFNER, S
    PHYSICA SCRIPTA, 1983, T4 : 144 - 147
  • [35] Angle-resolved photoemission spectroscopy of electronic structure of 1T-NbSeTe
    Wei Zhi-Yuan
    Hu Yong
    Zeng Ling-Yong
    Li Ze-Yu
    Qiao Zhen-Hua
    Luo Hui-Xia
    He Jun-Feng
    ACTA PHYSICA SINICA, 2022, 71 (12)
  • [36] Electronic structure of CeCoIn5 from angle-resolved photoemission spectroscopy
    Koitzsch, A.
    Opahle, I.
    Elgazzar, S.
    Borisenko, S. V.
    Geck, J.
    Zabolotnyy, V. B.
    Inosov, D.
    Shiozawa, H.
    Richter, M.
    Knupfer, M.
    Fink, J.
    Buechner, B.
    Bauer, E. D.
    Sarrao, J. L.
    Follath, R.
    PHYSICAL REVIEW B, 2009, 79 (07)
  • [37] Lattice and electronic structure of ScN observed by angle-resolved photoemission spectroscopy measurements
    Al-Atabi, Hayder A.
    Zhang, Xiaotian
    He, Shanmei
    Chen, Cheng
    Chen, Yulin
    Rotenberg, Eli
    Edgar, James H.
    APPLIED PHYSICS LETTERS, 2022, 121 (18)
  • [38] ANGLE-RESOLVED PHOTOEMISSION AND THE BAND-STRUCTURE OF NICKEL
    HEIMANN, P
    NEDDERMEYER, H
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1980, 15-8 (JAN-) : 1143 - 1144
  • [39] Angle-resolved photoemission spectroscopy study of adsorption process and electronic structure of silver on ZnO(1010)
    Ozawa, K
    Sato, T
    Kato, M
    Edamoto, K
    Aiura, Y
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (30): : 14619 - 14626
  • [40] Angle-Resolved Photoemission Study on the Band Structure of Organic Single Crystals
    Wang, Ke
    Ecker, Ben
    Gao, Yongli
    CRYSTALS, 2020, 10 (09): : 1 - 28