Principal component analysis of genetic data

被引:214
|
作者
Reich, David [1 ]
Price, Alkes L. [1 ]
Patterson, Nick [2 ,3 ]
机构
[1] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[2] Broad Inst Harvard, Cambridge, MA 02142 USA
[3] MIT, Cambridge, MA 02142 USA
关键词
D O I
10.1038/ng0508-491
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Principal component analysis ( PCA) has been a useful tool for analysis of genetic data, particularly in studies of human migration. A new study finds evidence that the observed geographic gradients, traditionally thought to represent major historical migrations, may in fact have other interpretations.
引用
收藏
页码:491 / 492
页数:2
相关论文
共 50 条
  • [21] Principal component analysis for compositional data vectors
    Huiwen Wang
    Liying Shangguan
    Rong Guan
    Lynne Billard
    Computational Statistics, 2015, 30 : 1079 - 1096
  • [22] Quantum data compression by principal component analysis
    Yu, Chao-Hua
    Gao, Fei
    Lin, Song
    Wang, Jingbo
    QUANTUM INFORMATION PROCESSING, 2019, 18 (08)
  • [23] Data evaluation in chromatography by principal component analysis
    Cserhati, T.
    BIOMEDICAL CHROMATOGRAPHY, 2010, 24 (01) : 20 - 28
  • [24] A nonlinear principal component analysis on image data
    Saegusa, R
    Sakano, H
    Hashimoto, S
    MACHINE LEARNING FOR SIGNAL PROCESSING XIV, 2004, : 589 - 598
  • [25] Weighting of geophysical data in Principal Component Analysis
    Chung, C
    Nigam, S
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D14) : 16925 - 16928
  • [26] Fuzzy principal component analysis for fuzzy data
    Yabuuchi, Y
    Watada, J
    Nakamori, Y
    PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 1127 - 1132
  • [27] Principal component analysis for compositional data vectors
    Wang, Huiwen
    Shangguan, Liying
    Guan, Rong
    Billard, Lynne
    COMPUTATIONAL STATISTICS, 2015, 30 (04) : 1079 - 1096
  • [28] Principal component analysis for Hilbertian functional data
    Kim, Dongwoo
    Lee, Young Kyung
    Park, Byeong U.
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (01) : 149 - 161
  • [29] Principal Component Analysis with Noisy and/or Missing Data
    Bailey, Stephen
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2012, 124 (919) : 1015 - 1023
  • [30] A Nonlinear principal component analysis of image data
    Saegusa, R
    Sakano, H
    Hashimoto, S
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (10): : 2242 - 2248