Short-term electricity price forecasting and classification in smart grids using optimized multikernel extreme learning machine

被引:31
|
作者
Bisoi, Ranjeeta [1 ]
Dash, P. K. [1 ]
Das, Pragyan P. [2 ]
机构
[1] Siksha O Anusandhan Univ, Multidisciplinary Res Cell, Bhubaneswar, India
[2] Orissa Engn Coll, Bhubaneswar, India
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 05期
关键词
Electricity price forecasting and classification; Extreme learning machine; Kernel extreme learning machine; Kernel functions; Price thresholds; Mutated water cycle algorithm; WATER CYCLE ALGORITHM; NEURAL-NETWORK; WAVELET TRANSFORM; MODEL; REGRESSION; VECTOR;
D O I
10.1007/s00521-018-3652-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Short-term electricity price forecasting in deregulated electricity markets has been studied extensively in recent years but without significant reduction in price forecasting errors. Also demand-side management and short-term scheduling operations in smart grids do not require strictly very accurate forecast and can be executed with certain practical price thresholds. This paper, therefore, presents a multikernel extreme learning machine (MKELM) for both short-term electricity price forecasting and classification according to some prespecified price thresholds. The kernel ELM does not require the hidden layer mapping function to be known and produces robust prediction and classification in comparison with the conventional ELM using random weights between the input and hidden layers. Further in the MKELM formulation, the linear combination of the weighted kernels is optimized using vaporization precipitation-based water cycle algorithm (WCA) to produce significantly accurate electricity price prediction and classification. The combination of MKELM and WCA is named as WCA-MKELM in this work. To validate the effectiveness of the proposed approach, three electricity markets, namely PJM, Ontario and New South Wales, are considered for electricity price forecasting and classification producing fairly accurate results.
引用
收藏
页码:1457 / 1480
页数:24
相关论文
共 50 条
  • [21] Short-Term Electricity Price Forecasting Based on BP Neural Network Optimized by SAPSO
    Yi, Min
    Xie, Wei
    Mo, Li
    ENERGIES, 2021, 14 (20)
  • [22] A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm
    Behera, Manoja Kumar
    Nayak, Niranjan
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (01): : 156 - 167
  • [23] Short-term electricity price forecasting using wavelet and SVM techniques
    Xu, Z
    Dong, ZY
    Liu, WQ
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, : 372 - 377
  • [24] Electricity price short-term forecasting using artificial neural networks
    Szkuta, BR
    Sanabria, LA
    Dillon, TS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1999, 14 (03) : 851 - 857
  • [25] Electricity price short-term forecasting using artificial neural networks
    Applied Computing Research Institute, La Trobe University, Melbourne, Vic., Australia
    IEEE Trans Power Syst, 3 (851-857):
  • [26] Short-term electricity price forecasting using a fuzzy stochastic predictor
    Sheikh-El-Eslami, Mohammad Kazem
    Seifi, Hossein
    2006 POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-9, 2006, : 2344 - +
  • [27] Short-Term Price Forecasting Considering Distributed Generation in the Price-Sensitive Environment of Smart Grids
    Aghaebrahimi, Mohammad R.
    Taherian, Hossein
    2016 4TH IRANIAN CONFERENCE ON RENEWABLE ENERGY & DISTRIBUTED GENERATION (ICREDG), 2016, : 92 - 97
  • [28] Application of Extreme Learning Machine- Autoencoder to Medium Term Electricity Price Forecasting
    Najafi, Arsalan
    Homaee, Omid
    Golshan, Mehdi
    Jasinski, Michal
    Leonowicz, Zbigniew
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (06) : 7214 - 7223
  • [29] Application of Extreme Learning Machine-Autoencoder to Medium Term Electricity Price Forecasting
    Najafi, Arsalan
    Homaee, Omid
    Jasinski, Michal
    Golshan, Mahdi
    Leonowicz, Zbigniew
    2022 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2022 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2022,
  • [30] HIRA Model for Short-Term Electricity Price Forecasting
    Cerjan, Marin
    Petricic, Ana
    Delimar, Marko
    ENERGIES, 2019, 12 (03)