3D Dendritic Spine Segmentation Using Nonparametric Shape Priors

被引:0
|
作者
Bocugoz, Erdem [1 ]
Erdil, Ertunc [1 ]
Argunsah, A. Ozgur [2 ]
Unay, Devrim [3 ]
Cetin, Mujdat [1 ]
机构
[1] Sabanci Univ, Muhendisl & Doga Bilimleri Fak, Istanbul, Turkey
[2] Zurih Univ, Beyin Arastirmalari Enstitusu, Zurih, Switzerland
[3] Izmir Econ Univ, Biyomed Muhendisligi, Izmir, Turkey
关键词
3D dendritic spine segmentation; nonparametric shape priors; Parzen density estimator; level sets; IMAGE SEGMENTATION; PROTEIN-SYNTHESIS; MICROSCOPY;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Analyzing morphological and structural changes of dendritic spines in 2-photon microscopy images in time is important for neuroscience researchers. Correct segmentation of dendritic spines is an important step of developing robust and reliable automatic tools for such analysis. In this paper, we propose an approach for segmentation of 3D dendritic spines using nonparametric shape priors. The proposed method learns the prior distribution of shapes through Parzen density estimation on the training set of shapes. Then, the posterior distribution of shapes is obtained by combining the learned prior distribution with a data term in a Bayesian framework. Finally, the segmentation result that maximizes the posterior is found using active contours. Experimental results demonstrate that using nonparametric shape priors leads to better 3D dendritic spine segmentation results.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] JOINT 3D CELL SEGMENTATION AND CLASSIFICATION IN THE ARABIDOPSIS ROOT USING ENERGY MINIMIZATION AND SHAPE PRIORS
    Liu, Kun
    Schmidt, Thorsten
    Blein, Thomas
    Duerr, Jasmin
    Palme, Klaus
    Ronneberger, Olaf
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 422 - 425
  • [12] Dense Reconstruction Using 3D Object Shape Priors
    Dame, Amaury
    Prisacariu, Victor A.
    Ren, Carl Y.
    Reid, Ian
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 1288 - 1295
  • [13] Coupled Shape Priors for Dynamic Segmentation of Dendritic Spines
    Atabakilachini, Naeimeh
    Erdil, Ertunc
    Argunsah, A. Ozgur
    Rada, Lavdie
    Unay, Devrim
    Cetin, Mujdat
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [14] Pseudo-Marginal MCMC Sampling for Image Segmentation Using Nonparametric Shape Priors
    Erdil, Ertunc
    Yildirim, Sinan
    Tasdizen, Tolga
    Cetin, Mujdat
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5702 - 5715
  • [15] Multi-Object Segmentation using Coupled Nonparametric Shape and Relative Pose Priors
    Uzunbas, Mustafa Gokhan
    Soldea, Octavian
    Cetin, Mujdat
    Unal, Gozde
    Ercil, Aytul
    Unay, Devrim
    Ekin, Ahmet
    Firat, Zeynep
    COMPUTATIONAL IMAGING VII, 2009, 7246
  • [16] Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts
    Bauer, Christian
    Pock, Thomas
    Sorantin, Erich
    Bischof, Horst
    Beichel, Reinhard
    MEDICAL IMAGE ANALYSIS, 2010, 14 (02) : 172 - 184
  • [17] Using Anatomical Priors for Deep 3D One-shot Segmentation
    Duc Duy Pham
    Dovletov, Gurbandurdy
    Pauli, Josef
    BIOIMAGING: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL. 2: BIOIMAGING, 2021, : 174 - 181
  • [18] Robust Deep 3D Blood Vessel Segmentation Using Structural Priors
    Li, Xuelu
    Bala, Raja
    Monga, Vishal
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1271 - 1284
  • [19] Coupled nonparametric shape priors for segmentation of multiple basal ganglia structures
    Uzunbas, Gokhan
    Cetin, Mujdat
    Unal, Gozde
    Ercil, Aytul
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 217 - 220
  • [20] Nonparametric shape priors for active contour-based image segmentation
    Kim, Jumno
    Cetin, Muejdat
    Willsky, Alan S.
    SIGNAL PROCESSING, 2007, 87 (12) : 3021 - 3044