Unconstrained Offline Handwriting Recognition using Connectionist Character N-grams

被引:0
|
作者
Zamora-Martinez, F. [1 ]
Castro-Bleda, M. J. [2 ]
Espana-Boquera, S. [2 ]
Gorbe-Moya, J. [2 ]
机构
[1] Univ CEU Cardenal Herrera, Dept Ciencias Fis Matemat & Computac, Alfara Del Patriarca 46115, Valencia, Spain
[2] Univ Politecn Valencia, Departamento Sist Informat & Comput, Valencia, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents an unconstrained offline handwritten line recognition system based on hybrid HMM (Hidden Markov Model)/ANN (Artificial Neural Network) models. The particularity of the system lies in the use of an ensemble of connectionist/statistical character n-gram language models. These language models are trained with a text corpus at character level; therefore, no explicit lexicon is used during recognition. The recognizer is thus able to output words which do not belong to that corpus. The proposed system favorably behaves compared to using a standard character n-gram on the IAM database lines corpus and achieves error rates comparable to state-of-the-art lexicon-driven alternatives.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Character N-Grams for Detecting Deceptive Controversial Opinions
    Sanchez-Junquera, Javier
    Villasenor-Pineda, Luis
    Montes-y-Gomez, Manuel
    Rosso, Paolo
    EXPERIMENTAL IR MEETS MULTILINGUALITY, MULTIMODALITY, AND INTERACTION (CLEF 2018), 2018, 11018 : 135 - 140
  • [22] Mining generalized character n-grams in large corpora
    Marques, NC
    Braud, A
    PROGRESS IN ARTIFICIAL INTELLIGENCE-B, 2003, 2902 : 419 - 423
  • [23] Measuring similarity between Karel programs using character and word n-grams
    G. Sidorov
    M. Ibarra Romero
    I. Markov
    R. Guzman-Cabrera
    L. Chanona-Hernández
    F. Velásquez
    Programming and Computer Software, 2017, 43 : 47 - 50
  • [24] Using character n-grams to match a list of publications to references in bibliographic databases
    Abdulhayoglu, Mehmet Ali
    Thijs, Bart
    Jeuris, Wouter
    SCIENTOMETRICS, 2016, 109 (03) : 1525 - 1546
  • [25] Automatic word spacing using probabilistic models based on character n-grams
    Lee, Do-Gil
    Rim, Hae-Chang
    Yook, Dongsuk
    IEEE INTELLIGENT SYSTEMS, 2007, 22 (01) : 28 - 35
  • [26] Using character n-grams to match a list of publications to references in bibliographic databases
    Mehmet Ali Abdulhayoglu
    Bart Thijs
    Wouter Jeuris
    Scientometrics, 2016, 109 : 1525 - 1546
  • [27] Social Network Multilingual Author Profiling using character and POS n-grams
    Gonzalez-Gallardo, Carlos-Emiliano
    Torres-Moreno, Juan-Manuel
    Rendon, Azucena Montes
    Sierra, Gerardo
    LINGUAMATICA, 2016, 8 (01): : 21 - 29
  • [28] Measuring similarity between Karel programs using character and word n-grams
    Sidorov, G.
    Ibarra Romero, M.
    Markov, I.
    Guzman-Cabrera, R.
    Chanona-Hernandez, L.
    Velasquez, F.
    PROGRAMMING AND COMPUTER SOFTWARE, 2017, 43 (01) : 47 - 50
  • [29] Webpage genre identification using variable-length character n-grams
    Kanaris, Ioannis
    Stamatatos, Efstathios
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL II, PROCEEDINGS, 2007, : 3 - +
  • [30] Combining Word and Character N-grams for Detecting Deceptive Opinions
    Siagian, Al Hafiz Akbar Maulana
    Aritsugi, Masayoshi
    2017 IEEE 41ST ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2017, : 828 - 833