Unconstrained Offline Handwriting Recognition using Connectionist Character N-grams

被引:0
|
作者
Zamora-Martinez, F. [1 ]
Castro-Bleda, M. J. [2 ]
Espana-Boquera, S. [2 ]
Gorbe-Moya, J. [2 ]
机构
[1] Univ CEU Cardenal Herrera, Dept Ciencias Fis Matemat & Computac, Alfara Del Patriarca 46115, Valencia, Spain
[2] Univ Politecn Valencia, Departamento Sist Informat & Comput, Valencia, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents an unconstrained offline handwritten line recognition system based on hybrid HMM (Hidden Markov Model)/ANN (Artificial Neural Network) models. The particularity of the system lies in the use of an ensemble of connectionist/statistical character n-gram language models. These language models are trained with a text corpus at character level; therefore, no explicit lexicon is used during recognition. The recognizer is thus able to output words which do not belong to that corpus. The proposed system favorably behaves compared to using a standard character n-gram on the IAM database lines corpus and achieves error rates comparable to state-of-the-art lexicon-driven alternatives.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Handwritten address recognition with open vocabulary using character n-grams
    Brakensiek, A
    Rottland, J
    Rigoll, G
    EIGHTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION: PROCEEDINGS, 2002, : 357 - 362
  • [2] Spam detection using character N-grams
    Kanaris, Ioannis
    Kanaris, Konstantinos
    Stamatatos, Efstathios
    ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 3955 : 95 - 104
  • [3] A comparison of character n-grams and dictionaries used for script recognition
    Brakensiek, A
    Rigoll, G
    SIXTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, PROCEEDINGS, 2001, : 241 - 245
  • [4] A Novel Connectionist System for Unconstrained Handwriting Recognition
    Graves, Alex
    Liwicki, Marcus
    Fernandez, Santiago
    Bertolami, Roman
    Bunke, Horst
    Schmidhuber, Juergen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (05) : 855 - 868
  • [5] Authorship Attribution in Portuguese Using Character N-grams
    Markov, Ilia
    Baptista, Jorge
    Pichardo-Lagunas, Obdulia
    ACTA POLYTECHNICA HUNGARICA, 2017, 14 (03) : 59 - 78
  • [6] Comparing word, character, and phoneme n-grams for subjective utterance recognition
    Wilson, Theresa
    Raaijmakers, Stephan
    INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 1614 - +
  • [7] SPEECH RECOGNITION USING FUNCTION-WORD N-GRAMS AND CONTENT-WORD N-GRAMS
    ISOTANI, R
    MATSUNAGA, S
    SAGAYAMA, S
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1995, E78D (06) : 692 - 697
  • [8] A first approach to CLIR using character n-grams alignment
    Vilares, Jesus
    Oakes, Michael P.
    Tait, John I.
    EVALUATION OF MULTILINGUAL AND MULTI-MODAL INFORMATION RETRIEVAL, 2007, 4730 : 111 - +
  • [9] Algorithms for correcting recognition results using N-grams
    Manzhikov T.V.
    Slavin O.A.
    Faradjev I.A.
    Janiszewski I.M.
    Pattern Recognition and Image Analysis, 2017, 27 (4) : 832 - 837
  • [10] Detection of Opinion Spam with Character n-grams
    Hernandez Fusilier, Donato
    Montes-y-Gomez, Manuel
    Rosso, Paolo
    Guzman Cabrera, Rafael
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2015), PT II, 2015, 9042 : 285 - 294