The normal approximation to the binomial

被引:3
|
作者
Proschan, Michael A. [1 ]
机构
[1] NIAID, Bethesda, MD 20892 USA
来源
AMERICAN STATISTICIAN | 2008年 / 62卷 / 01期
关键词
Bernoulli random variables; binomial distribution; central limit theorem;
D O I
10.1198/000313008X267848
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This note presents a heuristic derivation of the central limit theorem for Bernoulli random variables. While not a proof, it lends insight into why the normal distribution approximates the binomial.
引用
收藏
页码:62 / 63
页数:2
相关论文
共 50 条
  • [11] Skew-Normal Approximation to the Negative Binomial Distribution
    Chang, Ching-Hui
    Lin, Jyh-Jiuan
    Chiang, Miao-Chen
    IMSCI '08: 2ND INTERNATIONAL MULTI-CONFERENCE ON SOCIETY, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS, 2008, : 147 - +
  • [12] A normal approximation theorem in comparing two binomial distributions
    Cai, HY
    STATISTICS & PROBABILITY LETTERS, 2000, 48 (01) : 83 - 89
  • [13] Accuracy Properties of the Normal Approximation for the Estimators of the Ratio of Binomial Proportions
    Thangkitanan, Nattaka
    Budsaba, Kamon
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (11) : 4902 - 4912
  • [14] NORMAL APPROXIMATION FOR COVERAGE MODELS OVER BINOMIAL POINT PROCESSES
    Goldstein, Larry
    Penrose, Mathew D.
    ANNALS OF APPLIED PROBABILITY, 2010, 20 (02): : 696 - 721
  • [15] Accuracy Properties of the Normal Approximation for the Estimators of the Ratio of Binomial Proportions
    Nattaka Thangkitanan
    Kamon Budsaba
    Lobachevskii Journal of Mathematics, 2023, 44 : 4902 - 4912
  • [16] AN APPROXIMATION TO BINOMIAL DISTRIBUTION BY NORMAL DISTRIBUTION OF ORDER 1/N
    BORGES, R
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 14 (03): : 189 - &
  • [17] Normal Approximation for Bayesian Mixed Effects Binomial Regression Models
    Berman, Brandon
    Johnson, Wesley O.
    Shen, Weining
    BAYESIAN ANALYSIS, 2023, 18 (02): : 415 - 435
  • [18] Applying computer simulation to analyze the normal approximation of binomial distribution
    Chang H.-J.
    Lee M.-C.
    Lee, Ming-Chen (mindy1115@yahoo.com.tw), 1600, Computer Society of the Republic of China (28): : 116 - 131
  • [19] On the Normal Approximation for Some Special Estimators of the Ratio of Binomial Proportions
    Pattarapanitchai, Parichart
    Budsaba, Kamon
    Tran Loc Hung
    Volodin, Andrei
    THAILAND STATISTICIAN, 2022, 20 (04): : 779 - 790
  • [20] Binomial approximation to the Markov binomial distribution
    Cekanavicius, V.
    Roos, B.
    ACTA APPLICANDAE MATHEMATICAE, 2007, 96 (1-3) : 137 - 146